This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375537 #11 Aug 20 2024 09:14:47 %S A375537 0,0,1,0,1,0,0,1,1,2,0,1,1,2,0,0,1,1,2,0,1,0,1,1,2,1,1,0,0,1,1,2,1,1, %T A375537 0,3,0,1,1,2,1,1,0,3,0,0,1,1,2,1,1,1,3,2,1,0,1,1,2,1,1,1,3,2,1,0,0,1, %U A375537 1,2,1,1,1,3,2,1,0,2,0,1,1,2,1,1,1,3,2,1,0,2,0,0,1,1,2,1,1,1,3,2,1,0,2,0,1 %N A375537 Square array A(n, k) (n, k >= 1) read by antidiagonals in ascending order: A(n, k) = Max_{i = 1..n} v_prime(i)(k), where v_p(k) is the p-adic valuation of k. %C A375537 For a given n, A(n, k) is the sequence that gives the maximum exponent in the prime factorization of the largest prime(n)-smooth divisor of k. %H A375537 Amiram Eldar, <a href="/A375537/b375537.txt">Table of n, a(n) for n = 1..10011</a> (first 141 antidiagonals, flattened) %H A375537 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>. %F A375537 A(n, k) = Max_{i=1..n} A249344(i, k). %F A375537 A(n, k) = A051903(k) for n >= A000720(A006530(k)). %F A375537 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{i=1..m} A(n, i) = A375538(n)/A375539(n). %e A375537 Array begins: %e A375537 n | n-th row %e A375537 ---+----------------------------- %e A375537 1 | 0, 1, 0, 2, 0, 1, 0, 3, 0, 1 %e A375537 2 | 0, 1, 1, 2, 0, 1, 0, 3, 2, 1 %e A375537 3 | 0, 1, 1, 2, 1, 1, 0, 3, 2, 1 %e A375537 4 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1 %e A375537 5 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1 %e A375537 6 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1 %e A375537 7 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1 %e A375537 8 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1 %e A375537 9 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1 %e A375537 10 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1 %t A375537 A[n_, k_] := Max[IntegerExponent[k, Prime[Range[n]]]]; Table[A[n - k + 1, k], {n, 1, 14}, {k, 1 n}] // Flatten %o A375537 (PARI) A(n, k) = vecmax(apply(x -> valuation(k, x), primes(n))); %Y A375537 Cf. A000720, A006530, A051903, A249344, A375538, A375539. %Y A375537 Rows k = 1..3: A007814, A244417, A375536. %K A375537 nonn,easy,tabl %O A375537 1,10 %A A375537 _Amiram Eldar_, Aug 19 2024