cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375538 Numerator of the asymptotic mean over the positive integers of the maximum exponent in the prime factorization of the largest prime(n)-smooth divisor function.

This page as a plain text file.
%I A375538 #8 Aug 20 2024 09:14:42
%S A375538 1,13,51227,926908275845,548123689541583443758024333411,
%T A375538 629375533747930240763697631488051776709110194920714685268467462860005271344878614119
%N A375538 Numerator of the asymptotic mean over the positive integers of the maximum exponent in the prime factorization of the largest prime(n)-smooth divisor function.
%C A375538 The numbers of digits of the terms are 1, 2, 5, 12, 30, 84, 215, 537, 1237, 2930, 6775, 15484, 35185, ... .
%H A375538 Amiram Eldar, <a href="/A375538/b375538.txt">Table of n, a(n) for n = 1..8</a>
%H A375538 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.
%F A375538 Let f(n) = a(n)/A375539(n). Then:
%F A375538 f(n) = lim_{m->oo} (1/m) * Sum_{i=1..m} A375537(n, i).
%F A375538 f(n) = Sum_{k>=1} k * (d(k+1, prime(n)) - d(k, prime(n))), where d(k, p) = Product_{q prime <= p} (1 - 1/q^k).
%F A375538 Limit_{n->oo} f(n) = A033150.
%e A375538 Fractions begins: 1, 13/10, 51227/36540, 926908275845/636617813832, 548123689541583443758024333411/369693143251781030056182487680, ...
%e A375538 For n = 1, prime(1) = 2, the "2-smooth numbers" are the powers of 2 (A000079), and the sequence that gives the exponent of the largest power of 2 that divides n is A007814, whose asymptotic mean is 1.
%e A375538 For n = 2, prime(2) = 3, the 3-smooth numbers are in A003586, and the sequence that gives the maximum exponent in the prime factorization of the largest 3-smooth divisor of n is A244417, whose asymptotic mean is 13/10.
%t A375538 d[k_, n_] := Product[1 - 1/Prime[i]^k, {i, 1, n}]; f[n_] := Sum[k * (d[k+1, n] - d[k, n]), {k, 1, Infinity}]; Numerator[Array[f, 6]]
%Y A375538 Cf. A033150, A375537, A375539 (denominators).
%Y A375538 Cf. A375538 (numerators).
%Y A375538 Cf. A000079, A003586, A007814, A244417, A375536.
%K A375538 nonn,frac
%O A375538 1,2
%A A375538 _Amiram Eldar_, Aug 19 2024