This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375546 #13 Sep 19 2024 08:19:52 %S A375546 1,0,1,0,1,3,0,1,4,7,0,1,7,15,19,0,1,6,26,41,46,0,1,12,51,99,123,129, %T A375546 0,1,8,78,204,295,330,337,0,1,15,135,443,731,883,931,939,0,1,13,205, %U A375546 889,1726,2275,2509,2572,2581,0,1,18,328,1813,4068,5868,6808,7148,7228,7238 %N A375546 Triangle read by rows: T(n, k) = Sum_{d|n} d * A375467(d, k) for n > 0, T(0, 0) = 1. %e A375546 Triangle starts: %e A375546 [0] 1; %e A375546 [1] 0, 1; %e A375546 [2] 0, 1, 3; %e A375546 [3] 0, 1, 4, 7; %e A375546 [4] 0, 1, 7, 15, 19; %e A375546 [5] 0, 1, 6, 26, 41, 46; %e A375546 [6] 0, 1, 12, 51, 99, 123, 129; %e A375546 [7] 0, 1, 8, 78, 204, 295, 330, 337; %e A375546 [8] 0, 1, 15, 135, 443, 731, 883, 931, 939; %e A375546 [9] 0, 1, 13, 205, 889, 1726, 2275, 2509, 2572, 2581; %p A375546 div := n -> numtheory:-divisors(n): %p A375546 T := proc(n, k) option remember; local d; if n = 0 then 1 else %p A375546 add(d * A375467(d, k), d = div(n)) fi end: %p A375546 seq(seq(T(n, k), k = 0..n), n = 0..10): %o A375546 (Python) %o A375546 from functools import cache %o A375546 @cache %o A375546 def divisors(n): %o A375546 return [d for d in range(n, 0, -1) if n % d == 0] %o A375546 @cache %o A375546 def T(n, k): %o A375546 return sum(d * r(d, k) for d in divisors(n)) if n > 0 else 1 %o A375546 @cache %o A375546 def r(n, k): %o A375546 if n == 1: return int(k > 0) %o A375546 return sum(r(i, k) * T(n - i, k - 1) for i in range(1, n)) // (n - 1) %o A375546 for n in range(9): print([T(n, k) for k in range(n + 1)]) %Y A375546 Cf. A375467, A000203 (column 2), A209397 (main diagonal), A375547 (row sums). %K A375546 nonn,tabl %O A375546 0,6 %A A375546 _Peter Luschny_, Sep 15 2024