cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375550 Triangle read by rows: T(m, n, k) = binomial(n + 1, n - k)*hypergeom([m, k - n], [k + 2], -1) for m = 4.

This page as a plain text file.
%I A375550 #22 Feb 08 2025 16:04:50
%S A375550 1,6,1,25,7,1,88,32,8,1,280,120,40,9,1,832,400,160,49,10,1,2352,1232,
%T A375550 560,209,59,11,1,6400,3584,1792,769,268,70,12,1,16896,9984,5376,2561,
%U A375550 1037,338,82,13,1,43520,26880,15360,7937,3598,1375,420,95,14,1
%N A375550 Triangle read by rows: T(m, n, k) = binomial(n + 1, n - k)*hypergeom([m, k - n], [k + 2], -1) for m = 4.
%C A375550 Triangle T(m,n,k) is a Riordan array of the form ((1-x)^(m-1)*(1-2x)^(-m-1), x/(1-x)), for m = 3. - _Igor Victorovich Statsenko_, Feb 08 2025
%F A375550 T(m, n, k) = Sum_{j=0..n-k} binomial(m + j, m)*binomial(n + 1, n - (j + k)) for m = 3.
%F A375550 G.f. of column k: (1 - x)^(2 - k) / (1 - 2*x)^4.
%e A375550 Triangle starts:
%e A375550   [0]     1;
%e A375550   [1]     6,     1;
%e A375550   [2]    25,     7,     1;
%e A375550   [3]    88,    32,     8,    1;
%e A375550   [4]   280,   120,    40,    9,    1;
%e A375550   [5]   832,   400,   160,   49,   10,    1;
%e A375550   [6]  2352,  1232,   560,  209,   59,   11,   1;
%e A375550   [7]  6400,  3584,  1792,  769,  268,   70,  12,  1;
%e A375550   [8] 16896,  9984,  5376, 2561, 1037,  338,  82, 13,  1;
%e A375550   [9] 43520, 26880, 15360, 7937, 3598, 1375, 420, 95, 14, 1;
%e A375550   ...
%e A375550 Seen as an array of the columns:
%e A375550   [0] 1,  6, 25,  88,  280,  832,  2352,  6400,  16896, ...
%e A375550   [1] 1,  7, 32, 120,  400, 1232,  3584,  9984,  26880, ...
%e A375550   [2] 1,  8, 40, 160,  560, 1792,  5376, 15360,  42240, ...
%e A375550   [3] 1,  9, 49, 209,  769, 2561,  7937, 23297,  65537, ...
%e A375550   [4] 1, 10, 59, 268, 1037, 3598, 11535, 34832, 100369, ...
%e A375550   [5] 1, 11, 70, 338, 1375, 4973, 16508, 51340, 151709, ...
%e A375550   [6] 1, 12, 82, 420, 1795, 6768, 23276, 74616, 226325, ...
%p A375550 T := (m, n, k) -> binomial(n + 1, n - k)*hypergeom([m, k - n], [k + 2], -1);
%p A375550 for n from 0 to 9 do seq(simplify(T(4, n, k)), k = 0..n) od;
%p A375550 # As a binomial sum:
%p A375550 T := (m, n, k) -> add(binomial(m + j, m)*binomial(n + 1, n - (j + k)), j = 0..n-k):
%p A375550 for n from 0 to 9 do [n], seq(T(3, n, k), k = 0..n) od;
%p A375550 # Alternative, generating the array of the columns:
%p A375550 cgf := k -> (1 - x)^(2 - k) / (1 - 2*x)^4:
%p A375550 ser := (k, len) -> series(cgf(k), x, len + 2):
%p A375550 Tcol := (k, len) -> seq(coeff(ser(k, len), x, j), j = 0..len):
%p A375550 seq(lprint([k], Tcol(k, 8)), k = 0..6);
%Y A375550 Column k: A055585 (k=0), A001794 (k=1), A001789 (k=2), A027608 (k=3), A055586 (k=4).
%Y A375550 Cf. A145018 (diagonal n-2), A375549 (row sums), A049612 (alternating row sums), A122433.
%K A375550 nonn,tabl
%O A375550 0,2
%A A375550 _Peter Luschny_, Sep 23 2024