This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375553 #30 Sep 24 2024 19:50:30 %S A375553 3,7,3,3,19,3,31,3,3,7,11,17,3,3,3,3,13,3,29,3,23,3,3,7,41,7,3,3,3,3, %T A375553 3,31,7,3,3,3,11,3,7,19,3,11,7,11,3,11,3,23,7,47,19,3,23,3,7,3,7,11,3, %U A375553 3,11,3,23,7,3,3,3,29,7,11,7,3,11,23,3,3,3,3,13 %N A375553 a(n) is the smallest prime q such that the concatenation (p + q)"q is a prime number, where p = prime(n). %C A375553 Conjecture: The image of this sequence joined with {2, 5} are the prime numbers, {2, 5} union imag(a) = P. %H A375553 Sam Sweet, <a href="/A375553/b375553.txt">Table of n, a(n) for n = 1..500</a> %p A375553 P := select(isprime, [seq(2..405)]): %p A375553 g := p -> local q; %p A375553 for q in P do %p A375553 if isprime(q + (p + q)*10^(1 + ilog10(q))) then return q fi %p A375553 od: %p A375553 map(g, P); %t A375553 spq[p_]:=Module[{k=2},While[!PrimeQ[(p+k)*10^IntegerLength[k]+k],k=NextPrime[k]];k]; Table[spq[p],{p,Prime[Range[80]]}] (* _Harvey P. Dale_, Sep 24 2024 *) %o A375553 (SageMath) %o A375553 def f(p): %o A375553 for q in Primes(): %o A375553 if is_prime(q + (p + q)*10^(1 + int(log(q, 10)))): return q %o A375553 print([f(p) for p in prime_range(405)]) %o A375553 (PARI) %o A375553 a(n) = my(k=2); while (!isprime(eval(concat(Str(prime(n)+k), Str(k)))), k = nextprime(k+1)); k; \\ _Michel Marcus_, Sep 17 2024 %o A375553 (Python) %o A375553 from itertools import count %o A375553 from sympy import prime, isprime, nextprime %o A375553 def A375553(n): %o A375553 p, q, m = prime(n), 2, 10 %o A375553 for l in count(1): %o A375553 while q<m: %o A375553 if isprime(m*(p+q)+q): %o A375553 return q %o A375553 q = nextprime(q) %o A375553 m *= 10 # _Chai Wah Wu_, Sep 18 2024 %Y A375553 Cf. A000040, A375552, A174414. %K A375553 nonn,base %O A375553 1,1 %A A375553 _Peter Luschny_, Sep 17 2024