cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375555 Triangle read by rows: T(n, k) = abs(A181937(k, n)), where A181937 are the André numbers, for 0 <= k <= n.

This page as a plain text file.
%I A375555 #7 Aug 25 2024 04:24:16
%S A375555 1,1,1,1,1,1,1,1,2,1,1,1,5,3,1,1,1,16,9,4,1,1,1,61,19,14,5,1,1,1,272,
%T A375555 99,34,20,6,1,1,1,1385,477,69,55,27,7,1,1,1,7936,1513,496,125,83,35,8,
%U A375555 1,1,1,50521,11259,2896,251,209,119,44,9,1
%N A375555 Triangle read by rows: T(n, k) = abs(A181937(k, n)), where A181937 are the André numbers, for 0 <= k <= n.
%C A375555 See A181937 for comments and references.
%e A375555 Triangle starts:
%e A375555   [0]  1;
%e A375555   [1]  1, 1;
%e A375555   [2]  1, 1,    1;
%e A375555   [3]  1, 1,    2,    1;
%e A375555   [4]  1, 1,    5,    3,   1;
%e A375555   [5]  1, 1,   16,    9,   4,   1;
%e A375555   [6]  1, 1,   61,   19,  14,   5,  1;
%e A375555   [7]  1, 1,  272,   99,  34,  20,  6,  1;
%e A375555   [8]  1, 1, 1385,  477,  69,  55, 27,  7, 1;
%e A375555   [9]  1, 1, 7936, 1513, 496, 125, 83, 35, 8, 1;
%e A375555 .
%e A375555 Seen as an array:
%e A375555   [0]  1, 1,      1,      1,      1,      1,      1,      1, ...
%e A375555   [1]  1, 1,      2,      3,      4,      5,      6,      7, ...
%e A375555   [2]  1, 1,      5,      9,     14,     20,     27,     35, ...
%e A375555   [3]  1, 1,     16,     19,     34,     55,     83,    119, ...
%e A375555   [4]  1, 1,     61,     99,     69,    125,    209,    329, ...
%e A375555   [5]  1, 1,    272,    477,    496,    251,    461,    791, ...
%e A375555   [6]  1, 1,   1385,   1513,   2896,   2300,    923,   1715, ...
%e A375555   [7]  1, 1,   7936,  11259,  11056,  15775,  10284,   3431, ...
%p A375555 Andre := proc(n, k) option remember; local j;
%p A375555   ifelse(k = 0, 1, ifelse(n = 0, 1,
%p A375555   -add(binomial(k, j) * Andre(n, j), j = 0..k-1, n))) end:
%p A375555 T := (n, k) -> abs(Andre(k, n)): seq(seq(T(n, k), k = 0..n), n = 0..10);
%t A375555 Andre[n_, k_] := Andre[n, k] = If[k <= 0, 1, If[n == 0, 1, -Sum[Binomial[k, j] Andre[n, j], {j, 0, k-1, n}]]];
%t A375555 (* Seen as an array: *)
%t A375555 A[n_, k_] := Abs[Andre[k, n + k]];
%t A375555 Table[A[n, k], {n, 0, 9}, {k, 0, 7}] // MatrixForm
%Y A375555 Cf. A181937, A375554 (row sums), A030662 (central terms, main diagonal of array), A010763 (central terms of the (1, 1)-based variant).
%K A375555 nonn,tabl
%O A375555 0,9
%A A375555 _Peter Luschny_, Aug 19 2024