This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375574 #21 Sep 13 2024 07:43:42 %S A375574 1,6,6,28,28,24,126,234,224,360,504,980,990,1260,1764,1680,840,1080, %T A375574 4140,960,5760,4620,9180,11088,8960,6120,11880,25740,7140,2520,2016, %U A375574 25344,9720,48672,11760,10920,15120,14112,61740,55200,74340,91800,8190,78624,70200 %N A375574 Let d(1)<d(2)<...<d(q) denote the divisors of an integer k. a(n) = k is the smallest k such that the sum of its first n divisors, s = d(1) + ... + d(n), is also a divisor of k. %C A375574 The index i of s among the divisors of k is i = A375593(n), i.e. s = d(A375593(n)). %H A375574 David A. Corneth, <a href="/A375574/a375574.gp.txt">PARI program</a> %e A375574 *----*------*---------*---------------------------------* %e A375574 | n | a(n) | i | i-th | sum of n first divisors | %e A375574 | | | | divisor | of a(n) | %e A375574 *----*------*---------*---------------------------------* %e A375574 | 2 | 6 | 3 | 3 | 1+2 = 3 | %e A375574 *----*------*----*---------*----------------------------* %e A375574 | 3 | 6 | 4 | 6 | 1+2+3 = 6 | %e A375574 *----*------*----*---------*----------------------------* %e A375574 | 4 | 28 | 5 | 14 | 1+2+4+7 = 14 | %e A375574 *----*------*----*---------*----------------------------* %e A375574 | 5 | 28 | 6 | 28 | 1+2+4+7+14 = 28 | %e A375574 *----*------*----*---------*----------------------------* %e A375574 | 6 | 24 | 8 | 24 | 1+2+3+4+6+8 = 24 | %e A375574 *----*------*----*---------*----------------------------* %e A375574 | 7 | 126 | 10 | 42 | 1+2+3+6+7+9+14 = 42 | %e A375574 *----*------*----*---------*----------------------------* %e A375574 | 8 | 234 | 10 | 78 | 1+2+3+6+9+13+18+26 = 78 | %e A375574 *----*------*----*---------*----------------------------* %e A375574 | 9 | 224 | 11 | 112 | 1+2+4+7+8+14+16+28+32 = 112| %e A375574 |----*------*----*---------*----------------------------* %p A375574 with(numtheory):nn:=10^6:T:=array(1..44):i:=0: %p A375574 for n from 2 to 45 do: %p A375574 ii:=1: %p A375574 for a from 6 to nn while ii=1 %p A375574 do: %p A375574 d:=divisors(a):n0:=nops(d): %p A375574 if n0>=n %p A375574 then %p A375574 s:=sum('d[j]', 'j'=1..n): %p A375574 for m from 1 to n0 do: %p A375574 if s=d[m] %p A375574 then %p A375574 ii:=0:printf(`%d %d\n`,n,a):i:=i+1:T[i]:=a: %p A375574 else %p A375574 fi : %p A375574 od :fi: %p A375574 od:od:print(T): %o A375574 (PARI) \\ See Corneth link %o A375574 (Python) %o A375574 from sympy import divisors %o A375574 from itertools import count, islice %o A375574 def agen(): # generator of terms %o A375574 adict, n = dict(), 1 %o A375574 for k in count(1): %o A375574 d = divisors(k) %o A375574 if len(d) < n-1: continue %o A375574 dset, s = set(d), 0 %o A375574 for i, di in enumerate(d, 1): %o A375574 s += di %o A375574 if i >= n and i not in adict and s in dset: adict[i] = k %o A375574 while n in adict: yield adict[n]; n += 1 %o A375574 print(list(islice(agen(), 50))) # _Michael S. Branicky_, Aug 20 2024 %Y A375574 Cf. A000005, A000203, A001065, A240698, A375593. %K A375574 nonn %O A375574 1,2 %A A375574 _Michel Lagneau_, Aug 19 2024 %E A375574 a(1) = 1 prepended by _David A. Corneth_, Aug 20 2024