cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375575 a(n) is the least frequent digit of n! not counting trailing zeros, or -1 if there is more than one least frequent digit.

This page as a plain text file.
%I A375575 #17 Sep 15 2024 20:24:26
%S A375575 1,1,2,6,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,9,-1,-1,-1,-1,-1,-1,-1,-1,-1,
%T A375575 -1,2,-1,-1,7,0,4,-1,-1,-1,-1,-1,-1,8,-1,-1,-1,8,-1,-1,9,-1,-1,0,9,9,
%U A375575 -1,-1,-1,1,-1,-1,2,-1,-1,5,5,1,4,5,7,-1,5,-1,6,6,0,-1,5,9,6,-1,0,5,9
%N A375575 a(n) is the least frequent digit of n! not counting trailing zeros, or -1 if there is more than one least frequent digit.
%C A375575 Analogous to A375348.
%C A375575 If we were to count trailing zeros, then a(n) would never equal zero, for all n's >= 0. Therefore we only consider the decimal digits of A004154.
%C A375575 Conjecture: excluding -1, as n -> oo, the digits distribution is uniform as in A375348.
%e A375575 a(0) = a(1) = 1 because 0! = 1! = 1 and 1 is the only digit present;
%e A375575 a(4) = -1 since 4! = 24 and there are two least frequent digits, 2 and 4.
%e A375575 a(14) = 9 because 14! = 87178291200 and, not counting the two trailing 0's, there are two 1's, two 2's, two 7's, two 8's but only one 9.
%p A375575 f:= proc(n) local L,j;
%p A375575   L:= convert(n!,base,10);
%p A375575   for j from 1 while L[j] = 0 do od:
%p A375575   L:= Statistics:-Tally(L[j...-1]);
%p A375575   L:= sort(L,(a,b) -> rhs(a) < rhs(b));
%p A375575   if nops(L) >= 2 and rhs(L[2]) = rhs(L[1]) then -1 else lhs(L[1]) fi
%p A375575 end proc:
%p A375575 map(f, [$0..100]); # _Robert Israel_, Sep 02 2024
%t A375575 Rarest[lst_] := MinimalBy[ Tally[lst], Last][[All, 1]]; a[n_] := If[ Length[c = Rarest[ IntegerDigits[n!/10^IntegerExponent[n!, 10]] ]] >1, -1, c[[1]]]; Array[a, 80, 0]
%o A375575 (Python)
%o A375575 from collections import Counter
%o A375575 from sympy import factorial
%o A375575 def A375575(n): return -1 if len(k:=Counter(str(factorial(n)).rstrip('0')).most_common()) > 1 and k[-1][1]==k[-2][1] else int(k[-1][0]) # _Chai Wah Wu_, Sep 15 2024
%Y A375575 Cf. A004154, A027869, A031144, A034886, A061010, A137579, A137580, A375348.
%K A375575 base,easy,sign
%O A375575 0,3
%A A375575 _Stefano Spezia_ and _Robert G. Wilson v_, Aug 19 2024