A375580 a(n) is the number of partitions n = x + y + z of positive integers such that x*y*z is a perfect cube.
0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 3, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2, 2, 1, 2, 3, 2, 2, 3, 2, 0, 1, 1, 3, 1, 3, 2, 2, 1, 1, 1, 2, 1, 4, 1, 2, 3, 3, 3, 3, 1, 1, 4, 2, 2, 2, 3, 1, 2, 3, 1, 3, 4, 1, 3, 2, 2, 1, 2, 2, 3, 3, 2, 4
Offset: 0
Keywords
Examples
a(21) = 3 because the three partitions [1, 4, 16], [3, 6, 12], [7, 7, 7] satisfy the conditions: 1 + 4 + 16 = 21 and 1*4*16 = 4^3, 3 + 6 + 12 = 21 and 3*6*12 = 6^3, 7 + 7 + 7 = 21 and 7*7*7 = 7^3. See also linked Maple code.
Links
- Felix Huber and Charles R Greathouse IV, Table of n, a(n) for n = 0..10000 (up to 1000 from Huber)
- Felix Huber, Maple codes
- David A. Corneth, PARI program
Programs
-
Maple
# See Huber link.
-
PARI
a(n)=sum(x=1,n\3, sum(y=x,(n-x)\2, ispower(x*y*(n-x-y),3))) \\ Charles R Greathouse IV, Aug 20 2024
-
PARI
\\ See Corneth link
-
Python
from sympy import integer_nthroot def A375580(n): return sum(1 for x in range(n//3) for y in range(x,n-x-1>>1) if integer_nthroot((n-x-y-2)*(x+1)*(y+1),3)[1]) # Chai Wah Wu, Aug 21 2024
Formula
Trivial upper bound: a(n) <= A069905(n). - Charles R Greathouse IV, Aug 23 2024
Comments