This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375581 #9 Sep 13 2024 07:37:18 %S A375581 1,2,3,4,5,7,9,10,12,14,15,19,20,23,27,30,33,34,37,40,43,46,49,50,53, %T A375581 58,59,64,69,74,79,83,84,88,93,97,103,107,111,112,116,120,124,125,129, %U A375581 133,137,141,146,150,154,158,162,166,167,171,175,179,183,187,191 %N A375581 Numbers m such that there exists an integer k >= 1 for which the concatenation of m, 2m, ..., km is an m-digit number. %C A375581 Do there exist arbitrarily large gaps between successive terms? %e A375581 7 is a term because the concatenation of 7, 14, 21, 28 is 7142128 which has 7 digits. %e A375581 21 is not a term because the concatenation of 21, 42, ..., 168 has 20 digits but concatenating this with 168+21 = 189 gives a number with 23 digits. %t A375581 SelfIncrementingQ[n_] := Module[{len=Length@IntegerDigits[n],num,c=1,numDigits=0}, %t A375581 numDigits = len*Ceiling[(10^len - n)/n]; %t A375581 If[numDigits >= n, Return[Mod[n, len] == 0]]; %t A375581 num = Ceiling[10^len/n]*n; %t A375581 While[numDigits < n + 1, %t A375581 If[(len + c)*Ceiling[(10^(len + c) - num)/n] >= n - numDigits, %t A375581 Return[Mod[n - numDigits, len + c] == 0], %t A375581 numDigits += (len + c)*Ceiling[(10^(len + c) - num)/n] %t A375581 ]; %t A375581 num += Ceiling[(10^(len + c) - num)/n]*n; %t A375581 c++; %t A375581 ] %t A375581 ] %t A375581 Select[Range[191],SelfIncrementingQ] %Y A375581 Cf. A375461 (increment by 1). %K A375581 base,nonn %O A375581 1,2 %A A375581 _Nicholas M. R. Frieler_, Aug 19 2024