A375590 Numbers m such that there exists a nonnegative integer k for which the concatenation of m, m-1, ..., m-k is an m-digit number.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 150, 153, 156, 159, 162, 165, 168
Offset: 1
Examples
13 is a term because the concatenation of 13, 12, ..., 5 is a 13-digit number. 100 is not a term because the concatenation of 100, 99, ..., 52 is a 99-digit number and concatenating this number with 51 yields a 101-digit number.
Crossrefs
Cf. A375461 (self-consecutive).
Programs
-
Mathematica
SelfDownwardConsecutiveQ[n_] := Module[{len = Length@IntegerDigits[n], num, c = 1, numDigits = 0}, numDigits = len*Ceiling[n + 1 - 10^(len - 1)]; If[numDigits >= n, Return[Mod[n, len] == 0]]; num = n - Ceiling[n + 1 - 10^(len - 1)]; While[numDigits < n + 1, If[(len - c)*Ceiling[num + 1 - 10^(len - c - 1)] >= n - numDigits, Return[Mod[n - numDigits, len - c] == 0], numDigits += (len - c)*Ceiling[num + 1 - 10^(len - c - 1)] ]; num -= Ceiling[num + 1 - 10^(len - c - 1)]; c++; ] ] Select[Range[1000], SelfDownwardConsecutiveQ]
Comments