This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375594 #20 Aug 08 2025 20:14:27 %S A375594 1,0,0,6,9,8,0,4,8,4,9,6,2,5,1,5,5,8,7,0,2,5,0,7,0,6,8,8,4,4,5,9,9,9, %T A375594 3,3,0,9,1,8,1,1,8,3,8,4,2,9,5,7,7,3,6,5,1,2,0,9,7,6,6,8,3,5,8,7,6,6, %U A375594 7,3,8,3,7,5,7,7,5,9,5,9,6,9,3,4,0,0,7,8,4,7,1,0,9,8,0,4,3,6,1,5,8,5 %N A375594 Decimal expansion of Pi*(Pi^2*log(2) + 4*log(2)^3 + 6*zeta(3))/48. %C A375594 Apart from a factor sqrt(Pi)/16 the same as Adamchik's generalized Stirling number [1/2,4]. %H A375594 V. S. Adamchik, <a href="http://doi.org/10.1016/S0377-0427(96)00167-7">On Stirling numbers and Euler sums</a>, J. Comput. Appl. Math. 79 (1) (1997) 119-130. %H A375594 R. J. Mathar, <a href="https://arxiv.org/abs/2408.15212">Chebyshev approximation of x^m*(-log x)^l in the interval 0<=x<=1</a>, arXiv:2408.15212 [math.CA] (2024). %F A375594 Equals 5F4(1/2,1/2,1/2,1/2,1/2; 3/2,3/2,3/2,3/2; 1) = Sum_{k>= 0} binomial(2k,k)/[2^(2k)*(2k+1)^4]. %F A375594 Equals A196878/6. - _R. J. Mathar_, Aug 23 2024 %e A375594 1.006980484962515... %p A375594 1/48*Pi*(Pi^2*log(2)+4*log(2)^3+6*Zeta(3)) ; evalf(%) ; %t A375594 First[RealDigits[Pi*(Pi^2*Log[2] + 4*Log[2]^3 + 6*Zeta[3])/48, 10, 100]] (* _Paolo Xausa_, Aug 23 2024 *) %Y A375594 Cf. A019669 (2F1), A173623 (3F2), A318741 (4F3). %K A375594 nonn,cons %O A375594 1,4 %A A375594 _R. J. Mathar_, Aug 20 2024