This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375618 #21 Aug 22 2025 20:20:41 %S A375618 1,3,20,21,57,94,133,219,217,273,453,434,551,589,399,791,665,893,1321, %T A375618 779,1330,1387,1519,1749,1786,2033,1767,2527,2793,1995,4066,3325,4389, %U A375618 5548,4557,3895,4123,5187,5890,5529,5453,8075,6213,7980,7581,7790,11275,8113,11324,9310 %N A375618 a(n) is the least positive integer k such that there are n partitions k = x + y + z of positive integers such that x * y * z is a perfect cube or -1 if no such positive integer exists. %H A375618 David A. Corneth, <a href="/A375618/b375618.txt">Table of n, a(n) for n = 0..303</a> %H A375618 David A. Corneth, <a href="/A375618/a375618_1.gp.txt">PARI program</a> %e A375618 a(1) = 3 as 3 = 1 + 1 + 1 and 1 * 1 * 1 = 1 is a perfect cube. %p A375618 N:= 2*10^4: %p A375618 V:= Array(1..N): count:= 0: %p A375618 for x from 1 to N/3 do %p A375618 for y from x to (N-x)/2 do %p A375618 F:= ifactors(x*y)[2]; %p A375618 b:= mul(t[1],t = select(s -> s[2] mod 3 = 2, F)); %p A375618 c:= mul(t[1],t = select(s -> s[2] mod 3 = 1, F)); %p A375618 for k from ceil((y/(b*c^2))^(1/3)) do %p A375618 s:= x+y+k^3 * b * c^2; %p A375618 if s > N then break fi; %p A375618 if s < x + 2*y then next fi; %p A375618 V[s]:= V[s]+1 %p A375618 od od od: %p A375618 m:= max(V): %p A375618 A:= Array(0..m): A[0]:= 1: count:= 1: %p A375618 for i from 1 to N while count < m+1 do %p A375618 v:= V[i]; %p A375618 if A[v] = 0 then A[v]:= i; count:= count+1 fi %p A375618 od: %p A375618 AL:= convert(V,list); %p A375618 if not member(0,AL,'r') then r:= m+2 fi; %p A375618 AL[1..r-1]; # _Robert Israel_, Oct 21 2024, corrected Aug 22 2025 %o A375618 (PARI) \\ See Corneth link %Y A375618 Cf. A375580. %K A375618 nonn %O A375618 0,2 %A A375618 _David A. Corneth_, Aug 21 2024