cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375636 The number of infinitary divisors of n! that are factorials.

This page as a plain text file.
%I A375636 #9 Sep 05 2024 16:23:28
%S A375636 1,2,3,4,5,2,3,5,3,2,3,4,5,5,3,5,6,2,3,2,3,5,6,2,3,3,5,4,5,2,3,6,12,2,
%T A375636 2,2,3,5,3,4,5,7,8,4,4,2,3,2,2,3,6,4,5,2,3,5,7,4,5,4,5,5,3,4,12,2,3,2,
%U A375636 2,3,4,2,3,3,6,4,4,2,3,4,2,3,4,4,4,2,2
%N A375636 The number of infinitary divisors of n! that are factorials.
%H A375636 Amiram Eldar, <a href="/A375636/b375636.txt">Table of n, a(n) for n = 1..10000</a>
%F A375636 a(n) >= 2 for n >= 2.
%F A375636 a(n) <= 2 if and only if n is in A375637.
%F A375636 a(A375638(n)) = n or -1.
%F A375636 a(p) = a(p-1) + 1 for a prime p.
%F A375636 a(n) = 1 + Sum_{k=2..n} [Sum_{p prime <= A007917(k)} A090971(v_p(n!), v_p(k!)) = primepi(k)], where v_p(n) is the p-adic valuation of n, primepi(k) = A000720(k), and [] is the Iverson bracket.
%t A375636 expQ[e1_, e2_] := Module[{m = Length[e2], ans = 1}, Do[If[BitAnd[e1[[i]], e2[[i]]] < e2[[i]], ans = 0; Break[]], {i, 1, m}]; ans];
%t A375636 e[n_] := e[n] = FactorInteger[n!][[;; , 2]]; a[n_] := 1 + Sum[expQ[e[n], e[m]], {m, 2, n}]; Array[a, 100]
%o A375636 (PARI) isexp(e1, e2) = {my(m = #e2, ans = 1); for(i=1,m,if(bitand(e1[i], e2[i]) < e2[i], ans = 0; break)); ans;}
%o A375636 e(n) = factor(n!)[,2];
%o A375636 a(n) = 1 + sum(m = 2, n, isexp(e(n), e(m)));
%Y A375636 Cf. A000142, A000720, A037445, A077609, A090971, A375635, A375637, A375638.
%K A375636 nonn
%O A375636 1,2
%A A375636 _Amiram Eldar_, Aug 22 2024