A375637 Positive numbers k such that k! does not have nontrivial infinitary divisors that are factorials.
1, 2, 6, 10, 18, 20, 24, 30, 34, 35, 36, 46, 48, 49, 54, 66, 68, 69, 72, 78, 81, 86, 87, 90, 91, 92, 96, 102, 108, 114, 116, 117, 120, 121, 126, 130, 142, 143, 150, 155, 156, 161, 166, 171, 172, 180, 184, 190, 192, 198, 204, 205, 212, 216, 222, 228, 232, 238, 240
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
expQ[e1_, e2_] := Module[{m = Length[e2], ans = 1}, Do[If[BitAnd[e1[[i]], e2[[i]]] < e2[[i]], ans = 0; Break[]], {i, 1, m}]; ans]; e[n_] := e[n] = FactorInteger[n!][[;; , 2]]; q[n_] := Sum[expQ[e[n], e[m]], {m, 2, n}] <= 1; Select[Range[240], q]
-
PARI
isexp(e1, e2) = {my(m = #e2, ans = 1); for(i=1,m,if(bitand(e1[i], e2[i]) < e2[i], ans = 0; break)); ans;} e(n) = factor(n!)[,2]; is(n) = sum(m = 2, n, isexp(e(n), e(m))) <= 1;
Comments