This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375639 #19 Sep 29 2024 13:50:39 %S A375639 1,0,0,12,24,80,2520,17136,124320,2462400,30965760,372113280, %T A375639 7014807360,122840789760,2078973921024,43236813312000,932206147891200, %U A375639 20090534745415680,480054835899371520,12126262777282805760,313198020852233932800 %N A375639 Expansion of e.g.f. 1 / (1 + x^2 * log(1 - x))^2. %F A375639 E.g.f.: B(x)^2, where B(x) is the e.g.f. of A351503. %F A375639 a(n) = n! * Sum_{k=0..floor(n/3)} (k+1)! * |Stirling1(n-2*k,k)|/(n-2*k)!. %t A375639 With[{nn=20},CoefficientList[Series[1/(1+x^2 Log[1-x])^2,{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Sep 29 2024 *) %o A375639 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^2*log(1-x))^2)) %o A375639 (PARI) a(n) = n!*sum(k=0, n\3, (k+1)!*abs(stirling(n-2*k, k, 1))/(n-2*k)!); %Y A375639 Cf. A351503, A375679. %Y A375639 Cf. A375662. %K A375639 nonn %O A375639 0,4 %A A375639 _Seiichi Manyama_, Aug 23 2024