This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375650 #27 Aug 26 2024 11:43:33 %S A375650 1,3,23,6,18,24,69,10,71,22,68,25,41,69,125,15,61,73,104,28,36,68,110, %T A375650 33,115,48,3060,69,95,131,2951,21,133,67,92,76,108,108,297,37,3007,45, %U A375650 203,76,105,117,2914,45,147,119,183,57,70,3081,3060,82,228,102,284 %N A375650 a(n) is the cardinality of the sumset of the Collatz trajectory of n. %C A375650 "Sumset" of a set S = {s_i} means the set of sums of pairs, s_i + s_j with i <= j. %H A375650 Markus Sigg, <a href="/A375650/b375650.txt">Table of n, a(n) for n = 1..10000</a> %e A375650 The Collatz trajectory of 3 is {3,10,5,16,8,4,2,1}, which has the sumset {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,24,26,32} of size 23, so a(3) = 23. %o A375650 (PARI) a(n) = { %o A375650 my(T = List([n]), S = Set()); %o A375650 while(n > 1, n = if(n % 2 == 0, n/2, 3*n+1); listput(T, n)); %o A375650 for(i = 1, #T, %o A375650 for(j = i, #T, %o A375650 S = setunion(S, Set([T[i] + T[j]])); %o A375650 ) %o A375650 ); %o A375650 #S %o A375650 }; %o A375650 print(vector(59, n, a(n))); %o A375650 (Python) %o A375650 def a(n): %o A375650 T, S = [n], set() %o A375650 while n > 1: %o A375650 if n & 1 == 0: n >>= 1 %o A375650 else: n = 3 * n + 1 %o A375650 T.append(n) %o A375650 for i in range(len(T)): %o A375650 for j in range(i, len(T)): %o A375650 S.add(T[i] + T[j]) %o A375650 return len(S) %o A375650 print([a(n) for n in range(1, 60)]) # _DarĂo Clavijo_, Aug 24 2024 %Y A375650 A375006 is the list of those n for which a(n) < A008908(n) * (A008908(n) + 1) / 2. %K A375650 nonn %O A375650 1,2 %A A375650 _Markus Sigg_, Aug 24 2024