This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375659 #21 Sep 09 2024 19:58:18 %S A375659 1,1,2,2,3,4,3,6,7,8,6,10,14,15,16,10,20,25,30,31,32,20,35,50,56,62, %T A375659 63,64,35,70,91,112,119,126,127,128,70,126,182,210,238,246,254,255, %U A375659 256,126,252,336,420,456,492,501,510,511,512,252,462,672,792,912,957,1002,1012,1022,1023,1024 %N A375659 For 0<=k<=n, T(n,k) = the number of Dyck-type lattice paths of length n, starting at the point (0,k), triangle T read by rows. %C A375659 A Dyck type lattice path has the steps (1,1) or (1,-1) and never passes below the x-axis. %C A375659 For k>=n, the number of Dyck-type lattice paths is 2^n. %C A375659 The sequence completes A322291 by adding a diagonal of powers of 2. %H A375659 John Tyler Rascoe, <a href="/A375659/b375659.txt">Rows n = 0..140, flattened</a> %F A375659 T(n,k) = Sum_{i = 0..k} binomial(n, floor((n-k)/2)+i). %F A375659 T(n,k) = T(n-1,k-1)+T(n-1,k+1), for all n>=2 and 1<=k<=n-2. %e A375659 n | k=0 1 2 3 4 5 6 7 %e A375659 ---+--------------------------------------- %e A375659 0 | 1 %e A375659 1 | 1 2 %e A375659 2 | 2 3 4 %e A375659 3 | 3 6 7 8 %e A375659 4 | 6 10 14 15 16 %e A375659 5 | 10 20 25 30 31 32 %e A375659 6 | 20 35 50 56 62 63 64 %e A375659 7 | 35 70 92 112 119 126 127 128 %p A375659 a:=(n,k)->sum(binomial(n, floor((1/2)*(n-k))+i), i = 0..k): %p A375659 seq(seq(a(n, k), k = 0..n), n = 0..11); %o A375659 (Python) %o A375659 from math import comb %o A375659 def A375659(n,k): %o A375659 return sum(comb(n,i+(n-k)//2) for i in range(k+1)) # _John Tyler Rascoe_, Sep 04 2024 %Y A375659 T(n,0) = T(n-1,1) = A001405(n). %Y A375659 T(n,n) = A000079(n). %Y A375659 T(n,n-1) = A000225(n). %Y A375659 T(n,n-2) = A000918(n). %Y A375659 T(n,n-3) = A000247(n). %Y A375659 T(n,n-4) = A052515(n). %Y A375659 Row sums = A189162(n+1). %Y A375659 Cf. A322291, A368175. %K A375659 nonn,tabl,easy %O A375659 0,3 %A A375659 _Marilena Jianu_, Aug 23 2024