cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375669 The maximum exponent in the prime factorization of the largest odd divisor of n.

This page as a plain text file.
%I A375669 #7 Aug 23 2024 10:43:23
%S A375669 0,0,1,0,1,1,1,0,2,1,1,1,1,1,1,0,1,2,1,1,1,1,1,1,2,1,3,1,1,1,1,0,1,1,
%T A375669 1,2,1,1,1,1,1,1,1,1,2,1,1,1,2,2,1,1,1,3,1,1,1,1,1,1,1,1,2,0,1,1,1,1,
%U A375669 1,1,1,2,1,1,2,1,1,1,1,1,4,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,2,2,1,1,1,1,1
%N A375669 The maximum exponent in the prime factorization of the largest odd divisor of n.
%C A375669 The largest exponent among the exponents of the odd primes in the prime factorization of n.
%H A375669 Amiram Eldar, <a href="/A375669/b375669.txt">Table of n, a(n) for n = 1..10000</a>
%H A375669 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.
%F A375669 a(n) = A051903(A000265(n)).
%F A375669 a(n) = 0 if and only if n is a power of 2 (A000079).
%F A375669 a(n) = 1 if and only if n is in A122132 \ A000079.
%F A375669 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} k * d(k) = 1.25979668632898014495... , where d(k) is the asymptotic density of the occurrences of k in this sequence: d(1) = 4/(3*zeta(2)), and d(k) = (1/zeta(k+1)) / (1-1/2^(k+1)) - (1/zeta(k)) / (1-1/2^k) for k >= 2.
%t A375669 a[n_] := Module[{o = n / 2^IntegerExponent[n, 2]}, If[o == 1, 0, Max[FactorInteger[o][[;;, 2]]]]]; Array[a, 100]
%o A375669 (PARI) a(n) = {my(o = n >> valuation(n, 2)); if(o == 1, 0, vecmax(factor(o)[,2]));}
%Y A375669 Cf. A000079, A000265, A051903, A122132, A375670.
%K A375669 nonn,easy
%O A375669 1,9
%A A375669 _Amiram Eldar_, Aug 23 2024