A375670 The maximum exponent in the prime factorization of the largest 5-rough divisor of n.
0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 2, 1, 1, 1, 1, 1
Offset: 1
Links
Programs
-
Mathematica
a[n_] := Module[{m = n / Times@@({2,3}^IntegerExponent[n,{2,3}])}, If[m == 1, 0, Max[FactorInteger[m][[;; , 2]]]]]; Array[a, 100]
-
PARI
a(n) = {my(m = n >> valuation(n, 2)/3^valuation(n, 3)); if(m == 1, 0,vecmax(factor(m)[,2]));}
Formula
a(n) = 0 if and only if n is a 3-smooth number (A003586).
a(n) = 1 if and only if n is a product of a squarefree 5-rough number larger than 1 and a 3-smooth number.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} k * d(k) = 1.1034178389191320571029... , where d(k) is the asymptotic density of the occurrences of k in this sequence: d(1) = 3/(2*zeta(2)), and d(k) = (1/zeta(k+1)) / ((1-1/2^(k+1))*(1-1/3^(k+1))) - (1/zeta(k)) / ((1-1/2^k)*(1-1/3^k)) for k >= 2.
In general, the asymptotic mean of the maximum exponent in the prime factorization of the largest p-rough divisor of n is Sum_{k>=1} k * d(k), where d(1) = 1/(zeta(2) * f(p, 2)), d(k) = 1/(zeta(k+1) * f(p, k+1)) - 1/(zeta(k) * f(p, k)) for k >= 2, and f(p, m) = Product_{q prime < p} (1-1/q^m).
Comments