cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375672 Expansion of e.g.f. 1 / (1 + x * log(1 - x))^3.

This page as a plain text file.
%I A375672 #12 Sep 01 2024 09:35:24
%S A375672 1,0,6,9,168,810,11592,103320,1511808,19350576,315908640,5127930720,
%T A375672 95386497984,1843728194880,38978317929600,866801578406400,
%U A375672 20627303078937600,516780346452733440,13695223899883530240,381043219813390540800,11135125489382277811200
%N A375672 Expansion of e.g.f. 1 / (1 + x * log(1 - x))^3.
%F A375672 E.g.f.: B(x)^3, where B(x) is the e.g.f. of A052830.
%F A375672 a(n) = (n!/2) * Sum_{k=0..floor(n/2)} (k+2)! * |Stirling1(n-k,k)|/(n-k)!.
%o A375672 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x*log(1-x))^3))
%o A375672 (PARI) a(n) = n!*sum(k=0, n\2, (k+2)!*abs(stirling(n-k, k, 1))/(n-k)!)/2;
%Y A375672 Cf. A052830, A375671.
%Y A375672 Cf. A354122, A375661.
%K A375672 nonn
%O A375672 0,3
%A A375672 _Seiichi Manyama_, Aug 23 2024