cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375679 Expansion of e.g.f. 1 / (1 + x^2 * log(1 - x))^3.

This page as a plain text file.
%I A375679 #10 Sep 01 2024 09:38:45
%S A375679 1,0,0,18,36,120,4860,33264,241920,5598720,72364320,879500160,
%T A375679 18172978560,331463508480,5726430597888,126134466796800,
%U A375679 2836325702246400,62773403361177600,1562890149787392000,41009994647421972480,1090182759179092992000
%N A375679 Expansion of e.g.f. 1 / (1 + x^2 * log(1 - x))^3.
%F A375679 E.g.f.: B(x)^3, where B(x) is the e.g.f. of A351503.
%F A375679 a(n) = (n!/2) * Sum_{k=0..floor(n/3)} (k+2)! * |Stirling1(n-2*k,k)|/(n-2*k)!.
%o A375679 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^2*log(1-x))^3))
%o A375679 (PARI) a(n) = n!*sum(k=0, n\3, (k+2)!*abs(stirling(n-2*k, k, 1))/(n-2*k)!)/2;
%Y A375679 Cf. A351503, A375639.
%Y A375679 Cf. A375663.
%K A375679 nonn
%O A375679 0,4
%A A375679 _Seiichi Manyama_, Aug 23 2024