cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375681 Expansion of e.g.f. 1 / (1 + x * log(1 - x^2))^3.

This page as a plain text file.
%I A375681 #11 Sep 01 2024 10:13:22
%S A375681 1,0,0,18,0,180,4320,5040,241920,3900960,19958400,622702080,
%T A375681 9580032000,112086374400,3013462932480,52540488000000,977094287769600,
%U A375681 25683596370432000,540291743902310400,13061642656398336000,360218657273739264000,9111103133582241792000
%N A375681 Expansion of e.g.f. 1 / (1 + x * log(1 - x^2))^3.
%F A375681 E.g.f.: B(x)^3, where B(x) is the e.g.f. of A375561.
%F A375681 a(n) = (n!/2) * Sum_{k=0..floor(n/2)} (n-2*k+2)! * |Stirling1(k,n-2*k)|/k!.
%o A375681 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x*log(1-x^2))^3))
%o A375681 (PARI) a(n) = n!*sum(k=0, n\2, (n-2*k+2)!*abs(stirling(k, n-2*k, 1))/k!)/2;
%Y A375681 Cf. A375561, A375680.
%Y A375681 Cf. A375665.
%K A375681 nonn
%O A375681 0,4
%A A375681 _Seiichi Manyama_, Aug 23 2024