cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375686 Expansion of e.g.f. 1 / (1 + x^2/2 * log(1 - x))^3.

This page as a plain text file.
%I A375686 #11 Sep 01 2024 10:14:12
%S A375686 1,0,0,9,18,60,1350,9072,65520,984960,11627280,135883440,2109317760,
%T A375686 33214821120,529403146272,9536973415200,182108114697600,
%U A375686 3599078480524800,76130266179974400,1701744508586747520,39652022068801632000,970411293528131750400
%N A375686 Expansion of e.g.f. 1 / (1 + x^2/2 * log(1 - x))^3.
%F A375686 E.g.f.: B(x)^3, where B(x) is the e.g.f. of A351505.
%F A375686 a(n) = (n!/2) * Sum_{k=0..floor(n/3)} (k+2)! * |Stirling1(n-2*k,k)|/(2^k*(n-2*k)!).
%o A375686 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^2/2*log(1-x))^3))
%o A375686 (PARI) a(n) = n!*sum(k=0, n\3, (k+2)!*abs(stirling(n-2*k, k, 1))/(2^k*(n-2*k)!))/2;
%Y A375686 Cf. A351505, A375685.
%Y A375686 Cf. A375682.
%K A375686 nonn
%O A375686 0,4
%A A375686 _Seiichi Manyama_, Aug 24 2024