This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375690 #13 Sep 01 2024 09:37:48 %S A375690 3,10301,101030101,1210103010121,12121010301012121, %T A375690 111212101030101212111,3111121210103010121211113, %U A375690 17311112121010301012121111371,961731111212101030101212111137169,3196173111121210103010121211113716913,95319617311112121010301012121111371691359,109531961731111212101030101212111137169135901,1410953196173111121210103010121211113716913590141,13141095319617311112121010301012121111371691359014131 %N A375690 a(1) = 3; for n > 1, a(n) is the smallest palindromic prime containing exactly 2 more digits on each end than a(n-1), with a(n-1) as the central substring. %C A375690 This is a finite sequence since at a(14) there is no way to add 2 more digits and reach a palindromic prime. %e A375690 As a triangle: %e A375690 3 %e A375690 10301 %e A375690 101030101 %e A375690 1210103010121 %e A375690 12121010301012121 %o A375690 (Python) %o A375690 from sympy import isprime %o A375690 from itertools import product %o A375690 def agen(): # generator of terms %o A375690 an, s = 3, "3" %o A375690 while an > 0: %o A375690 yield an %o A375690 an = -1 %o A375690 for f, r in product("1379", "0123456789"): %o A375690 sn = f+r+s+r+f %o A375690 if isprime(t:=int(sn)): %o A375690 an, s = t, sn %o A375690 break %o A375690 print(list(agen())) # _Michael S. Branicky_, Aug 25 2024 %Y A375690 Cf. A047076, A053600, A082563. %K A375690 nonn,base,fini,full %O A375690 1,1 %A A375690 _Shyam Sunder Gupta_, Aug 24 2024