cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375700 Expansion of e.g.f. 1 / (1 + x^3 * log(1 - x))^(1/3).

This page as a plain text file.
%I A375700 #9 Aug 25 2024 09:58:19
%S A375700 1,0,0,0,8,20,80,420,11648,100800,912000,9055200,181547520,2790627840,
%T A375700 41568334080,635617382400,13172198645760,273158953267200,
%U A375700 5632405756723200,117530452124467200,2815021136030515200,71252240659839590400,1844362570865444044800
%N A375700 Expansion of e.g.f. 1 / (1 + x^3 * log(1 - x))^(1/3).
%F A375700 a(n) = n! * Sum_{k=0..floor(n/4)} (Product_{j=0..k-1} (6*j+2)) * |Stirling1(n-3*k,k)|/(6^k*(n-3k)!).
%o A375700 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^3*log(1-x))^(1/3)))
%o A375700 (PARI) a(n) = n!*sum(k=0, n\4, prod(j=0, k-1, 6*j+2)*abs(stirling(n-3*k, k, 1))/(6^k*(n-3*k)!));
%Y A375700 Cf. A351504, A375699, A375701.
%K A375700 nonn
%O A375700 0,5
%A A375700 _Seiichi Manyama_, Aug 25 2024