This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375703 #10 Aug 29 2024 17:19:19 %S A375703 2,5,10,17,26,28,33,37,50,65,82,101,122,126,129,145,170,197,217,226, %T A375703 244,257,290,325,344,362,401,442,485,513,530,577,626,677,730,785,842, %U A375703 901,962,1001,1025,1090,1157,1226,1297,1332,1370,1445,1522,1601,1682,1729 %N A375703 Minimum of the n-th maximal run of adjacent (increasing by one at a time) non-perfect-powers. %C A375703 Non-perfect-powers A007916 are numbers without a proper integer root. %F A375703 Numbers k > 0 such that k-1 is a perfect power (A001597) but k is not. %e A375703 The list of all non-perfect-powers, split into runs, begins: %e A375703 2 3 %e A375703 5 6 7 %e A375703 10 11 12 13 14 15 %e A375703 17 18 19 20 21 22 23 24 %e A375703 26 %e A375703 28 29 30 31 %e A375703 33 34 35 %e A375703 37 38 39 40 41 42 43 44 45 46 47 48 %e A375703 Row n has length A375702, first a(n), last A375704, sum A375705. %t A375703 radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1; %t A375703 Min/@Split[Select[Range[100],radQ],#1+1==#2&]//Most %t A375703 - or - %t A375703 radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1; %t A375703 Select[Range[100],radQ[#]&&!radQ[#-1]&] %Y A375703 For prime numbers we have A045344. %Y A375703 For nonsquarefree numbers we have A053806, anti-runs A373410. %Y A375703 For nonprime numbers we have A055670, anti-runs A005381. %Y A375703 For squarefree numbers we have A072284, anti-runs A373408. %Y A375703 The anti-run version is A216765 (same as A375703 with 2 exceptions). %Y A375703 For non-prime-powers we have A373673, anti-runs A120430. %Y A375703 For prime-powers we have A373676, anti-runs A373575. %Y A375703 For runs of non-perfect-powers (A007916): %Y A375703 - length: A375702 = A053289(n+1) - 1. %Y A375703 - first: A375703 (this) %Y A375703 - last: A375704 %Y A375703 - sum: A375705 %Y A375703 A001597 lists perfect-powers, differences A053289. %Y A375703 A007916 lists non-perfect-powers, differences A375706. %Y A375703 A046933 counts composite numbers between primes. %Y A375703 A375736 gives lengths of anti-runs of non-prime-powers, sums A375737. %Y A375703 Cf. A007674, A045542, A375708, A375713, A375714. %K A375703 nonn %O A375703 1,1 %A A375703 _Gus Wiseman_, Aug 28 2024