cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375718 Expansion of e.g.f. 1 / sqrt(1 - x^3 * (exp(x) - 1)).

This page as a plain text file.
%I A375718 #7 Aug 25 2024 09:58:38
%S A375718 1,0,0,0,12,30,60,105,15288,136332,794160,3742695,165156420,
%T A375718 2977295178,34259966832,307175369865,8066201665200,210501545175960,
%U A375718 3893163654156768,56023707973290507,1275541469736173820,38629328708426716470,991445561747177496960
%N A375718 Expansion of e.g.f. 1 / sqrt(1 - x^3 * (exp(x) - 1)).
%F A375718 a(n) = n! * Sum_{k=0..floor(n/4)} (Product_{j=0..k-1} (6*j+3)) * Stirling2(n-3*k,k)/(6^k*(n-3k)!).
%o A375718 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/sqrt(1-x^3*(exp(x)-1))))
%o A375718 (PARI) a(n) = n!*sum(k=0, n\4, prod(j=0, k-1, 6*j+3)*stirling(n-3*k, k, 2)/(6^k*(n-3*k)!));
%Y A375718 Cf. A358014, A375716, A375717.
%Y A375718 Cf. A375701.
%K A375718 nonn
%O A375718 0,5
%A A375718 _Seiichi Manyama_, Aug 25 2024