cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375721 Expansion of e.g.f. 1 / (1 + 3 * log(1 - x))^2.

This page as a plain text file.
%I A375721 #13 Sep 06 2024 06:12:28
%S A375721 1,6,60,822,14238,297684,7286076,204251328,6450932448,226613038608,
%T A375721 8763294140064,369900822475728,16922169163019088,833991953707934496,
%U A375721 44050579327333028448,2482381132145285334912,148660444826262311114880,9427874254540824544312320
%N A375721 Expansion of e.g.f. 1 / (1 + 3 * log(1 - x))^2.
%F A375721 a(n) = Sum_{k=0..n} 3^k * (k+1)! * |Stirling1(n,k)|.
%F A375721 a(0) = 1; a(n) = 3 * Sum_{k=1..n} (k/n + 1) * (k-1)! * binomial(n,k) * a(n-k).
%F A375721 a(n) ~ sqrt(2*Pi) * n^(n + 3/2) / (9 * exp(2*n/3) * (exp(1/3) - 1)^(n+2)). - _Vaclav Kotesovec_, Sep 06 2024
%o A375721 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+3*log(1-x))^2))
%o A375721 (PARI) a(n) = sum(k=0, n, 3^k*(k+1)!*abs(stirling(n, k, 1)));
%Y A375721 Cf. A354263, A375722.
%Y A375721 Cf. A052801, A367474.
%Y A375721 Cf. A367472.
%K A375721 nonn
%O A375721 0,2
%A A375721 _Seiichi Manyama_, Aug 25 2024