This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375729 #19 Sep 22 2024 18:42:42 %S A375729 1,1,1,1,1,2,1,3,3,4,2,3,7,7,0,2,2,16,8,4,2,21,21,7,7,48,24,24,0,3,93, %T A375729 93,128,64,64,32,32,8,6,1,315,315,448,224,224,112,56,56,23,8,8,2,675, %U A375729 675,225,225,135,135,45,45,9,9,2,2,2048,1024,512,256,128,64,32,16,3825,3825,0,0,0,0,0,0,30,30 %N A375729 Irregular triangular array read by rows. T(n,k) is the number of monic irreducible polynomials of degree n in F_2[x] that are k-normal, n>=1, k>=0 . %C A375729 A monic irreducible polynomial of degree n in F_q[x] is k-normal if the span of its roots (expressed as a q-ary word with respect to any normal basis) in F_q^n has dimension n-k. For a more detailed definition of a k-normal polynomial see the abstract of the Alizadeh, Darafsheh, Mehrabi link below. %C A375729 Conjecture: Let alpha be in F_q^n. Write alpha as a q-ary word w with respect to the standard polynomial basis (1,x,x^2,x^3,...,x^(n-1)). Let beta in F_q^n be the q-ary word w interpreted with respect to any normal basis. Then beta is a root of a k-normal polynomial iff the period of w = n and deg(gcd(alpha,x^n-1))=k. %H A375729 M. Alizadeh, M Darafsheh, and S. Mehrabi, <a href="https://ijpam.uniud.it/online_issue/201839/38-Alizadeh-Darafsheh-Mehrabi.pdf">On the k-normal elements and polynomials over finite fields</a>, Italian Journal of Pure and Applied Mathematics, 39 (2018), 451-464. %H A375729 S. Huczynska, G. Mullen, D. Panario, and D. Thomson, <a href="https://doi.org/10.1016/j.ffa.2013.07.004">Existences and properties of k-normal elements over finite fileds</a>, Finite Fields and Their Applications, 24 (2013), 170-183. %e A375729 Triangle begins ... %e A375729 1, 1; %e A375729 1; %e A375729 1, 1; %e A375729 2, 1; %e A375729 3, 3; %e A375729 4, 2, 3; %e A375729 7, 7, 0, 2, 2; %e A375729 16, 8, 4, 2; %e A375729 21, 21, 7, 7; %e A375729 48, 24, 24, 0, 3; %e A375729 93, 93; %e A375729 128, 64, 64, 32, 32, 8, 6, 1; %e A375729 315, 315; %e A375729 448, 224, 224, 112, 56, 56, 23, 8, 8, 2; %e A375729 675, 675, 225, 225, 135, 135, 45, 45, 9, 9, 2, 2; %e A375729 2048, 1024, 512, 256, 128, 64, 32, 16; %e A375729 3825, 3825, 0, 0, 0, 0, 0, 0, 30, 30; %e A375729 ... %e A375729 T(6,1) = 2 because we have 1+X+X^6 and 1+X+X^3+X^4+X^6. %t A375729 knormalcy[lyndonword_, n_] := n - MatrixRank[Table[RotateRight[lyndonword, k], {k, 0, n - 1}], Modulus -> 2]; Map[Table[Count[#, i], {i, 0, Max[#]}] &,Table[orbit[word_] := Table[RotateLeft[word, k], {k, 0, nn - 1}]; c = Select[DeleteDuplicates[Map[Sort, Map[orbit, Tuples[{0, 1}, nn]] /. Table[Tuples[{0, 1}, nn][[i]] -> i - 1, {i, 1, 2^nn}]]], Length[DeleteDuplicates[#]] == nn &][[All, 1]]; Map[knormalcy[#, nn] &, Table[Tuples[{0, 1}, nn][[i]], {i, 1, 2^nn}][[c + 1]]], {nn, 1, 5}]] %Y A375729 Cf. A001037 (row sums), A027362 (column k=0), A330694, A003473. %K A375729 nonn,tabf %O A375729 1,6 %A A375729 _Geoffrey Critzer_, Aug 25 2024