cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375729 Irregular triangular array read by rows. T(n,k) is the number of monic irreducible polynomials of degree n in F_2[x] that are k-normal, n>=1, k>=0 .

This page as a plain text file.
%I A375729 #19 Sep 22 2024 18:42:42
%S A375729 1,1,1,1,1,2,1,3,3,4,2,3,7,7,0,2,2,16,8,4,2,21,21,7,7,48,24,24,0,3,93,
%T A375729 93,128,64,64,32,32,8,6,1,315,315,448,224,224,112,56,56,23,8,8,2,675,
%U A375729 675,225,225,135,135,45,45,9,9,2,2,2048,1024,512,256,128,64,32,16,3825,3825,0,0,0,0,0,0,30,30
%N A375729 Irregular triangular array read by rows.  T(n,k) is the number of monic irreducible polynomials of degree n in F_2[x] that are k-normal, n>=1, k>=0 .
%C A375729 A monic irreducible polynomial of degree n in F_q[x] is k-normal if the span of its roots (expressed as a q-ary word with respect to any normal basis) in F_q^n has dimension n-k.  For a more detailed definition of a k-normal polynomial see the abstract of the Alizadeh, Darafsheh, Mehrabi link below.
%C A375729 Conjecture:  Let alpha be in F_q^n.  Write alpha as a q-ary word w with respect to the standard polynomial basis (1,x,x^2,x^3,...,x^(n-1)).  Let beta in F_q^n be the q-ary word w interpreted with respect to any normal basis.  Then beta is a root of a k-normal polynomial iff the period of w = n and deg(gcd(alpha,x^n-1))=k.
%H A375729 M. Alizadeh, M Darafsheh, and S. Mehrabi, <a href="https://ijpam.uniud.it/online_issue/201839/38-Alizadeh-Darafsheh-Mehrabi.pdf">On the k-normal elements and polynomials over finite fields</a>, Italian Journal of Pure and Applied Mathematics, 39 (2018), 451-464.
%H A375729 S. Huczynska, G. Mullen, D. Panario, and D. Thomson, <a href="https://doi.org/10.1016/j.ffa.2013.07.004">Existences and properties of k-normal elements over finite fileds</a>, Finite Fields and Their Applications, 24 (2013), 170-183.
%e A375729  Triangle begins ...
%e A375729     1,     1;
%e A375729     1;
%e A375729     1,     1;
%e A375729     2,     1;
%e A375729     3,     3;
%e A375729     4,     2,   3;
%e A375729     7,     7,   0,   2,   2;
%e A375729    16,     8,   4,   2;
%e A375729    21,    21,   7,   7;
%e A375729    48,    24,  24,   0,   3;
%e A375729    93,    93;
%e A375729   128,    64,  64,  32,  32,   8,  6,  1;
%e A375729   315,   315;
%e A375729   448,   224, 224, 112,  56,  56, 23,  8,  8,  2;
%e A375729   675,   675, 225, 225, 135, 135, 45, 45,  9,  9, 2, 2;
%e A375729   2048, 1024, 512, 256, 128,  64, 32, 16;
%e A375729   3825, 3825,   0,   0,   0,   0,  0,  0, 30, 30;
%e A375729   ...
%e A375729  T(6,1) = 2 because we have 1+X+X^6 and 1+X+X^3+X^4+X^6.
%t A375729 knormalcy[lyndonword_, n_] := n - MatrixRank[Table[RotateRight[lyndonword, k], {k, 0, n - 1}], Modulus -> 2]; Map[Table[Count[#, i], {i, 0, Max[#]}] &,Table[orbit[word_] := Table[RotateLeft[word, k], {k, 0, nn - 1}]; c = Select[DeleteDuplicates[Map[Sort, Map[orbit, Tuples[{0, 1}, nn]] /. Table[Tuples[{0, 1}, nn][[i]] -> i - 1, {i, 1, 2^nn}]]], Length[DeleteDuplicates[#]] == nn &][[All, 1]]; Map[knormalcy[#, nn] &, Table[Tuples[{0, 1}, nn][[i]], {i, 1, 2^nn}][[c + 1]]], {nn, 1, 5}]]
%Y A375729  Cf. A001037 (row sums), A027362 (column k=0), A330694, A003473.
%K A375729 nonn,tabf
%O A375729 1,6
%A A375729 _Geoffrey Critzer_, Aug 25 2024