cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375737 Sum of the n-th maximal anti-run of adjacent (increasing by more than one at a time) non-perfect-powers.

Original entry on oeis.org

2, 8, 6, 17, 11, 12, 13, 14, 32, 18, 19, 20, 21, 22, 23, 78, 29, 30, 64, 34, 72, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 98, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 128, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 162, 83, 84, 85, 86, 87
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers with no proper integer roots.
An anti-run of a sequence is an interval of positions at which consecutive terms differ by more than one.

Examples

			The initial anti-runs are the following, whose sums are a(n):
  (2)
  (3,5)
  (6)
  (7,10)
  (11)
  (12)
  (13)
  (14)
  (15,17)
  (18)
  (19)
  (20)
  (21)
  (22)
  (23)
  (24,26,28)
		

Crossrefs

For nonprime numbers we have A373404, runs A054265.
For squarefree numbers we have A373411, runs A373413.
For nonsquarefree numbers we have A373412, runs A373414.
For prime-powers we have A373576, runs A373675.
For non-prime-powers we have A373679, runs A373678.
For anti-runs of non-perfect-powers:
- length: A375736
- first: A375738
- last: A375739
- sum: A375737 (this)
For runs of non-perfect-powers:
- length: A375702
- first: A375703
- last: A375704
- sum: A375705
A001597 lists perfect-powers, differences A053289.
A007916 lists non-perfect-powers, differences A375706.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Total/@Split[Select[Range[100],radQ],#1+1!=#2&]//Most