This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375738 #5 Sep 11 2024 10:07:12 %S A375738 2,3,6,7,11,12,13,14,15,18,19,20,21,22,23,24,29,30,31,34,35,38,39,40, %T A375738 41,42,43,44,45,46,47,48,51,52,53,54,55,56,57,58,59,60,61,62,63,66,67, %U A375738 68,69,70,71,72,73,74,75,76,77,78,79,80,83,84,85,86,87,88 %N A375738 Minimum of the n-th maximal anti-run of adjacent (increasing by more than one at a time) non-perfect-powers. %C A375738 Non-perfect-powers (A007916) are numbers with no proper integer roots. %C A375738 An anti-run of a sequence is an interval of positions at which consecutive terms differ by more than one. %e A375738 The initial anti-runs are the following, whose minima are a(n): %e A375738 (2) %e A375738 (3,5) %e A375738 (6) %e A375738 (7,10) %e A375738 (11) %e A375738 (12) %e A375738 (13) %e A375738 (14) %e A375738 (15,17) %e A375738 (18) %e A375738 (19) %e A375738 (20) %e A375738 (21) %e A375738 (22) %e A375738 (23) %e A375738 (24,26,28) %t A375738 radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1; %t A375738 Min/@Split[Select[Range[100],radQ],#1+1!=#2&]//Most %Y A375738 For composite numbers we have A005381, runs A008864 (except first term). %Y A375738 For prime-powers we have A120430, runs A373673 (except first term). %Y A375738 For squarefree numbers we have A373408, runs A072284. %Y A375738 For nonsquarefree numbers we have A373410, runs A053806. %Y A375738 For non-prime-powers we have A373575, runs A373676. %Y A375738 For anti-runs of non-perfect-powers: %Y A375738 - length: A375736 %Y A375738 - first: A375738 (this) %Y A375738 - last: A375739 %Y A375738 - sum: A375737 %Y A375738 For runs of non-perfect-powers: %Y A375738 - length: A375702 %Y A375738 - first: A375703 %Y A375738 - last: A375704 %Y A375738 - sum: A375705 %Y A375738 A001597 lists perfect-powers, differences A053289. %Y A375738 A007916 lists non-perfect-powers, differences A375706. %Y A375738 Cf. A007674, A045542, A046933, A061399, A216765, A251092, A373403, A373679, A375708, A375714. %K A375738 nonn %O A375738 1,1 %A A375738 _Gus Wiseman_, Sep 10 2024