This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375740 #9 Sep 13 2024 06:58:11 %S A375740 1,3,4,6,7,8,9,10,12,13,14,15,16,17,18,21,22,23,25,26,28,29,30,31,32, %T A375740 33,34,35,36,37,38,40,41,42,43,44,45,46,47,48,49,50,51,52,54,55,56,57, %U A375740 58,59,60,61,62,63,64,65,66,67,68,70,71,72,73,74,75,76,77 %N A375740 Numbers k such that A007916(k+1) - A007916(k) = 1. In other words, the k-th non-perfect-power is 1 less than the next. %C A375740 Positions in A007916 of numbers k such that k+1 is also a member. %C A375740 Positions of 1's in A375706 (first differences of A007916). %C A375740 Non-perfect-powers (A007916) are numbers with no proper integer roots. %e A375740 The non-perfect-powers are 2, 3, 5, 6, 7, 10, 11, 12, 13, ... which increase by one after positions 1, 3, 4, 6, ... %t A375740 radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1; %t A375740 Join@@Position[Differences[Select[Range[100],radQ]],1] %o A375740 (Python) %o A375740 from itertools import count, islice %o A375740 from sympy import perfect_power %o A375740 def A375740_gen(): # generator of terms %o A375740 a, b = -1, 0 %o A375740 for n in count(2): %o A375740 c = not perfect_power(n) %o A375740 if c: %o A375740 a += 1 %o A375740 if b&c: %o A375740 yield a %o A375740 b = c %o A375740 A375740_list = list(islice(A375740_gen(), 52)) # _Chai Wah Wu_, Sep 11 2024 %Y A375740 The version for non-prime-powers is A375713, differences A373672. %Y A375740 The complement is A375714, differences A375702. %Y A375740 The version for prime-powers is A375734, differences A373671. %Y A375740 The complement for non-prime-powers is A375928, differences A110969. %Y A375740 A000040 lists the prime numbers, differences A001223. %Y A375740 A000961 lists prime-powers (inclusive), differences A057820. %Y A375740 A001597 lists perfect-powers, differences A053289. %Y A375740 A002808 lists the composite numbers, differences A073783. %Y A375740 A018252 lists the nonprime numbers, differences A065310. %Y A375740 Non-perfect-powers: %Y A375740 - terms: A007916 %Y A375740 - differences: A375706 %Y A375740 - runs: sum A375705, A375703, A375704, A375702 %Y A375740 - anti-runs: A375737, A375738, A375739, A375736. %Y A375740 Non-prime-powers (exclusive): %Y A375740 - terms: A361102 %Y A375740 - differences: A375708 %Y A375740 - runs: A373678, A373676, A373677, A110969 %Y A375740 - anti-runs: A373679, A373575, A255346, A373672 %Y A375740 Cf. A006549, A046933, A093555, A174965, A246655, A251092. %K A375740 nonn %O A375740 1,2 %A A375740 _Gus Wiseman_, Sep 10 2024