This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375758 #11 Jan 27 2025 09:39:56 %S A375758 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,26,28,30,32, %T A375758 34,36,38,21,27,33,39,42,45,48,51,54,57,40,44,52,56,60,64,68,72,76,80, %U A375758 25,35,50,55,65,70,75,85,90,95,66,78,84,96,102,108,114 %N A375758 Lexicographically earliest sequence of distinct positive integers such that for any n > 0, the initial digit of n divides a(n). %C A375758 This sequence is a permutation of the positive integers with inverse A375759. %H A375758 Rémy Sigrist, <a href="/A375758/b375758.txt">Table of n, a(n) for n = 1..10000</a> %H A375758 Rémy Sigrist, <a href="/A375758/a375758.gp.txt">PARI program</a> %H A375758 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A375758 The first terms are: %e A375758 n a(n) a(n)/A30(n) | n a(n) a(n)/A30(n) %e A375758 -- ---- ----------- | -- ---- ----------- %e A375758 1 1 1 | 16 16 16 %e A375758 2 2 1 | 17 17 17 %e A375758 3 3 1 | 18 18 18 %e A375758 4 4 1 | 19 19 19 %e A375758 5 5 1 | 20 20 10 %e A375758 6 6 1 | 21 22 11 %e A375758 7 7 1 | 22 24 12 %e A375758 8 8 1 | 23 26 13 %e A375758 9 9 1 | 24 28 14 %e A375758 10 10 10 | 25 30 15 %e A375758 11 11 11 | 26 32 16 %e A375758 12 12 12 | 27 34 17 %e A375758 13 13 13 | 28 36 18 %e A375758 14 14 14 | 29 38 19 %e A375758 15 15 15 | 30 21 7 %o A375758 (PARI) \\ See Links section. %o A375758 (Python) %o A375758 from itertools import count, islice %o A375758 def agen(): # generator of terms %o A375758 aset, m = set(), 1 %o A375758 for n in count(1): %o A375758 n1 = int(str(n)[0]) %o A375758 an = next(k for k in count(m) if k not in aset and k%n1 == 0) %o A375758 yield an %o A375758 aset.add(an) %o A375758 while m in aset: m += 1 %o A375758 print(list(islice(agen(), 67))) # _Michael S. Branicky_, Jan 27 2025 %Y A375758 Cf. A000030, A308539, A375759 (inverse). %K A375758 nonn,base %O A375758 1,2 %A A375758 _Rémy Sigrist_, Aug 26 2024