This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375760 #22 Aug 28 2024 10:59:07 %S A375760 2,2,3,2,2,2,2,2,2,2,101,13,2,3,41,5,61,7,83,19,1009,11,223,233,443, %T A375760 557,661,277,881,199,10007,1117,2221,2333,4441,5557,6661,1777,8887, %U A375760 1999,100003,10111,22229,23333,44449,155557,166667,47777,88883,49999,1000003,101111,1222229,313333,444443,555557,666667,727777,888887,199999 %N A375760 Array read by rows: T(n,k) is the first prime with exactly n occurrences of decimal digit k. %H A375760 Robert Israel, <a href="/A375760/b375760.txt">Table of n, a(n) for n = 0..1009</a> (rows 0 to 100) %e A375760 T(4,1) = 10111 because 10111 is the first prime with four 1's. %e A375760 Array starts %e A375760 2 2 3 2 2 2 2 2 2 2 %e A375760 101 13 2 3 41 5 61 7 83 19 %e A375760 1009 11 223 233 443 557 661 277 881 199 %e A375760 10007 1117 2221 2333 4441 5557 6661 1777 8887 1999 %e A375760 100003 10111 22229 23333 44449 155557 166667 47777 88883 49999 %e A375760 1000003 101111 1222229 313333 444443 555557 666667 727777 888887 199999 %p A375760 F:= proc(v,x) local d,y,z,L,S,SS,Cands,t,i,k; %p A375760 for d from v do %p A375760 Cands:= NULL; %p A375760 if x = 0 then SS:= combinat:-choose([$2..d-1],v) %p A375760 elif member(x,[1,3,7,9]) then SS:= combinat:-choose(d,v) %p A375760 else SS:= combinat:-choose([$2..d],v) %p A375760 fi; %p A375760 for S in SS do %p A375760 for y from 9^(d-v+1) to 9^(d-v+1)+9^(d-v)-1 do %p A375760 L:= convert(y,base,9)[1..d-v+1]; %p A375760 L:= map(proc(s) if s < x then s else s+1 fi end proc, L); %p A375760 i:= 1; %p A375760 t:= 0: %p A375760 for k from 1 to d do %p A375760 if member(k,S) then t:= t + x*10^(k-1) %p A375760 else t:= t + L[i]*10^(k-1); i:= i+1; %p A375760 fi; %p A375760 od; %p A375760 Cands:= Cands, t %p A375760 od od; %p A375760 Cands:= sort([Cands]); %p A375760 for t in Cands do if isprime(t) then return t fi od; %p A375760 od %p A375760 end proc: %p A375760 F(0,0):= 2: F(1,2):= 2: F(1,5):= 5: %p A375760 for i from 0 to 10 do %p A375760 seq(F(i,x), x=0..9) %p A375760 od; %t A375760 T[n_,k_]:=Module[{p=2},While[Count[IntegerDigits[p],k]!=n, p=NextPrime[p]]; p]; Table[T[n,k],{n,0,5},{k,0,9}]//Flatten (* _Stefano Spezia_, Aug 27 2024 *) %Y A375760 Cf. A037053, A037055, A037057, A037059, A037061, A037063, A037065, A037067, A037069, A037071 %K A375760 nonn,tabf,base %O A375760 0,1 %A A375760 _Robert Israel_, Aug 27 2024