cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375766 The maximum exponent in the prime factorization of the numbers whose exponents in their prime factorization are all Fibonacci numbers.

This page as a plain text file.
%I A375766 #7 Aug 28 2024 00:56:55
%S A375766 0,1,1,2,1,1,1,3,2,1,1,2,1,1,1,1,2,1,2,1,1,1,3,2,1,3,2,1,1,1,5,1,1,1,
%T A375766 2,1,1,1,3,1,1,1,2,2,1,1,2,2,1,2,1,3,1,3,1,1,1,2,1,1,2,1,1,1,2,1,1,1,
%U A375766 3,1,1,2,2,1,1,1,1,1,2,1,1,1,3,1,2,1,2,1,1,1,5,1,2,2,2,1,1,1,3,1,1,1,3,1,1
%N A375766 The maximum exponent in the prime factorization of the numbers whose exponents in their prime factorization are all Fibonacci numbers.
%C A375766 First differs from A375768 at n = 2448.
%C A375766 All the terms are Fibonacci numbers by definition.
%H A375766 Amiram Eldar, <a href="/A375766/b375766.txt">Table of n, a(n) for n = 1..10000</a>
%F A375766 a(n) = A051903(A115063(n)).
%F A375766 a(n) = A000045(A375767(n)).
%F A375766 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (1/zeta(2) + Sum_{k>=3} (Fibonacci(k) * (d(k) - d(k-1)))) / A375274 = 1.52546070254904121983..., where d(k) = Product_{p prime} ((1-1/p)*(1 + Sum_{i=2..k} 1/p^Fibonacci(i))) for k >= 3, and d(2) = 1/zeta(2).
%t A375766 fibQ[n_] := Or @@ IntegerQ /@ Sqrt[5*n^2 + {-4, 4}]; s[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, fibQ], Max[e], Nothing]]; s[1] = 0; Array[s, 100]
%o A375766 (PARI) isfib(n) = issquare(5*n^2 - 4) || issquare(5*n^2 + 4);
%o A375766 lista(kmax) = {my(e, ans); print1(0, ", "); for(k = 2, kmax, e = factor(k)[,2]; ans = 1; for(i = 1, #e, if(!isfib(e[i]), ans = 0; break)); if(ans, print1(vecmax(e), ", ")));}
%Y A375766 Cf. A000045, A051903, A115063, A375274, A375767, A375768.
%K A375766 nonn,easy
%O A375766 1,4
%A A375766 _Amiram Eldar_, Aug 27 2024