cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375767 The indices of the terms of A375766 in the Fibonacci sequence.

This page as a plain text file.
%I A375767 #8 Aug 28 2024 00:57:11
%S A375767 0,2,2,3,2,2,2,4,3,2,2,3,2,2,2,2,3,2,3,2,2,2,4,3,2,4,3,2,2,2,5,2,2,2,
%T A375767 3,2,2,2,4,2,2,2,3,3,2,2,3,3,2,3,2,4,2,4,2,2,2,3,2,2,3,2,2,2,3,2,2,2,
%U A375767 4,2,2,3,3,2,2,2,2,2,3,2,2,2,4,2,3,2,3,2,2,2,5,2,3,3,3,2,2,2,4,2,2,2,4,2,2
%N A375767 The indices of the terms of A375766 in the Fibonacci sequence.
%C A375767 First differs from A375769 at n = 2448.
%C A375767 Since 1 appears twice in the Fibonacci sequence (1 = Fibonacci(1) = Fibonacci(2)), its index here is chosen to be 2.
%H A375767 Amiram Eldar, <a href="/A375767/b375767.txt">Table of n, a(n) for n = 1..10000</a>
%F A375767 a(n) = A130233(A375766(n)).
%F A375767 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (2/zeta(2) + Sum_{k>=3} (k * (d(k) - d(k-1)))) / A375274 = 2.49917281727849805875..., where d(k) = Product_{p prime} ((1-1/p)*(1 + Sum_{i=2..k} 1/p^Fibonacci(i))) for k >= 3, and d(2) = 1/zeta(2).
%F A375767 If the chosen index for 1 is 1 instead of 2, then the asymptotic mean is (1/zeta(2) + Sum_{k>=3} (k * (d(k) - d(k-1)))) / A375274 = 1.85541131398927903176... .
%t A375767 fibQ[n_] := Or @@ IntegerQ /@ Sqrt[5*n^2 + {-4, 4}]; A130233[n_] := Module[{k = 2}, While[Fibonacci[k] <= n, k++]; k-1]; s[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, fibQ], A130233[Max[e]], Nothing]]; s[1] = 0; Array[s, 100]
%o A375767 (PARI) isfib(n) = issquare(5*n^2 - 4) || issquare(5*n^2 + 4);
%o A375767 A130233(n) = {my(k = 2); while(fibonacci(k) <= n, k++); k-1;}
%o A375767 lista(kmax) = {my(e, ans); print1(0, ", "); for(k = 2, kmax, e = factor(k)[,2]; ans = 1; for(i = 1, #e, if(!isfib(e[i]), ans = 0; break)); if(ans, print1(A130233(vecmax(e)), ", ")));}
%Y A375767 Cf. A000045, A130233, A375274, A375766, A375769.
%K A375767 nonn,easy
%O A375767 1,2
%A A375767 _Amiram Eldar_, Aug 27 2024