cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375768 The maximum exponent in the prime factorization of the numbers whose maximum exponent in their prime factorization is a Fibonacci number.

This page as a plain text file.
%I A375768 #10 Mar 30 2025 04:51:51
%S A375768 0,1,1,2,1,1,1,3,2,1,1,2,1,1,1,1,2,1,2,1,1,1,3,2,1,3,2,1,1,1,5,1,1,1,
%T A375768 2,1,1,1,3,1,1,1,2,2,1,1,2,2,1,2,1,3,1,3,1,1,1,2,1,1,2,1,1,1,2,1,1,1,
%U A375768 3,1,1,2,2,1,1,1,1,1,2,1,1,1,3,1,2,1,2,1,1,1,5,1,2,2,2,1,1,1,3,1,1,1,3,1,1
%N A375768 The maximum exponent in the prime factorization of the numbers whose maximum exponent in their prime factorization is a Fibonacci number.
%C A375768 First differs from A375766 at n = 2448.
%C A375768 All the terms are Fibonacci numbers by definition.
%H A375768 Amiram Eldar, <a href="/A375768/b375768.txt">Table of n, a(n) for n = 1..10000</a>
%F A375768 a(n) = A051903(A369939(n)).
%F A375768 a(n) = A000045(A375769(n)).
%F A375768 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (1/zeta(2) + Sum_{k>=3} Fibonacci(k) * (1/zeta(Fibonacci(k)+1) - 1/zeta(Fibonacci(k)))) / d = 1.52660290991620063268..., where d = 1/zeta(4) + Sum_{k>=5} (1/zeta(Fibonacci(k)+1) - 1/zeta(Fibonacci(k))) = 0.94462177878047854647... is the density of A369939.
%t A375768 fibQ[n_] := Or @@ IntegerQ /@ Sqrt[5*n^2 + {-4, 4}]; s[n_] := Module[{e = Max[FactorInteger[n][[;; , 2]]]}, If[fibQ[e], e, Nothing]]; s[1] = 0; Array[s, 100]
%o A375768 (PARI) isfib(n) = issquare(5*n^2 - 4) || issquare(5*n^2 + 4);
%o A375768 lista(kmax) = {my(e); print1(0, ", "); for(k = 2, kmax, e = vecmax(factor(k)[,2]); if(isfib(e), print1(e, ", ")));}
%Y A375768 Cf. A000045, A051903, A369939, A375766, A375769.
%K A375768 nonn,easy
%O A375768 1,4
%A A375768 _Amiram Eldar_, Aug 27 2024