cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375769 The indices of the terms of A375768 in the Fibonacci sequence.

This page as a plain text file.
%I A375769 #15 Apr 13 2025 19:57:18
%S A375769 0,2,2,3,2,2,2,4,3,2,2,3,2,2,2,2,3,2,3,2,2,2,4,3,2,4,3,2,2,2,5,2,2,2,
%T A375769 3,2,2,2,4,2,2,2,3,3,2,2,3,3,2,3,2,4,2,4,2,2,2,3,2,2,3,2,2,2,3,2,2,2,
%U A375769 4,2,2,3,3,2,2,2,2,2,3,2,2,2,4,2,3,2,3,2,2,2,5,2,3,3,3,2,2,2,4,2,2,2,4,2,2
%N A375769 The indices of the terms of A375768 in the Fibonacci sequence.
%C A375769 First differs from A375767 at n = 2448.
%C A375769 Since 1 appears twice in the Fibonacci sequence (1 = Fibonacci(1) = Fibonacci(2)), its index here is chosen to be 2.
%H A375769 Amiram Eldar, <a href="/A375769/b375769.txt">Table of n, a(n) for n = 1..10000</a>
%F A375769 a(n) = A130233(A375768(n)).
%F A375769 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (2/zeta(2) + Sum_{k>=3} k * (1/zeta(Fibonacci(k)+1) - 1/zeta(Fibonacci(k)))) / d = 2.4999593748274972257073..., where d = 1/zeta(4) + Sum_{k>=5} (1/zeta(Fibonacci(k)+1) - 1/zeta(Fibonacci(k))) = 0.94462177878047854647... is the density of A369939.
%F A375769 If the chosen index for 1 is 1 instead of 2, then the asymptotic mean is (1/zeta(2) + Sum_{k>=3} k * (1/zeta(Fibonacci(k)+1) - 1/zeta(Fibonacci(k)))) / d = 1.85639269500896710302009... .
%t A375769 fibQ[n_] := Or @@ IntegerQ /@ Sqrt[5*n^2 + {-4, 4}]; A130233[n_] := Module[{k = 2}, While[Fibonacci[k] <= n, k++]; k-1]; s[n_] := Module[{e = Max[FactorInteger[n][[;; , 2]]]}, If[fibQ[e], A130233[e], Nothing]]; s[1] = 0; Array[s, 100]
%o A375769 (PARI) isfib(n) = issquare(5*n^2 - 4) || issquare(5*n^2 + 4);
%o A375769 A130233(n) = {my(k = 2); while(fibonacci(k) <= n, k++); k-1;}
%o A375769 lista(kmax) = {my(e); print1(0, ", "); for(k = 2, kmax, e = vecmax(factor(k)[,2]); if(isfib(e), print1(A130233(e), ", ")));}
%Y A375769 Cf. A000045, A130233, A369939, A375767, A375768.
%K A375769 nonn,easy
%O A375769 1,2
%A A375769 _Amiram Eldar_, Aug 27 2024