This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375770 #18 Sep 04 2024 08:47:44 %S A375770 1,1,10,149,3177,76258,1991098,56431302,1738662461,58282168670, %T A375770 2121623710614,83566630166058,3545346228604588,161250925229195536, %U A375770 7827463597195165900,403872784815626357788,22069190323151660044413,1273007854598883147607470,77288239799225577008977654 %N A375770 In an n X n grid draw straight walls between cells, starting at a border, such that the resulting figure is connected and has only one-cell wide paths; a(n) is the number of solutions distinct under reflections and rotations. %C A375770 This sequence contains some, but not all of the spanning trees in A349718. %H A375770 Andrew Howroyd, <a href="/A375770/b375770.txt">Table of n, a(n) for n = 1..100</a> %H A375770 Andrew Howroyd, <a href="/A375770/a375770.gp.txt">PARI Program and formula</a>, Sep 2024. %e A375770 a(2)=1: %e A375770 +=======+ %e A375770 | o - o | %e A375770 | | | | %e A375770 | o ║ o | %e A375770 +===+===+ %e A375770 a(3)=10: %e A375770 +===========+ +=======+===+ +=======+===+ +===+===+===+ +===========+ %e A375770 | o - o - o | | o - o ║ o | | o - o ║ o | | o ║ o ║ o | | o - o - o | %e A375770 | | | | | | | | | | | | | ║ | | | | | | | | | | ══+ %e A375770 | o ║ o ║ o | | o ║ o - o | | o ║ o ║ o | | o - o - o | | o ║ o - o | %e A375770 | | ║ | ║ | | | | ║ | | | | | ║ | | | | | | | | | | ║ | | | %e A375770 | o ║ o ║ o | | o ║ o ║ o | | o ║ o - o | | o ║ o ║ o | | o ║ o ║ o | %e A375770 +===+===+===+ +===+===+===+ +===+=======+ +===+===+===+ +===+===+===+ %e A375770 +===+=======+ +=======+===+ +===========+ +===========+ +=======+===+ %e A375770 | o ║ o - o | | o - o ║ o | | o - o - o | | o - o - o | | o - o ║ o | %e A375770 | | | ══+ | | | | | | | | ══+ +═══ | ══+ +═══ | | | %e A375770 | o - o - o | | o ║ o - o | | o ║ o - o | | o - o - o | | o - o - o | %e A375770 | | | | | | | ║ | ══+ | | ║ | ══+ | | | | | | | | ══+ %e A375770 | o ║ o ║ o | | o ║ o - o | | o ║ o - o | | o ║ o ║ o | | o ║ o - o | %e A375770 +===+===+===+ +===+=======+ +===+=======+ +===+===+===+ +===+=======+ %e A375770 n=4 sample %e A375770 +===+===+===+===+ +=======+===+===+ %e A375770 | o ║ o ║ o ║ o | | o - o ║ o ║ o | %e A375770 | | | | | | +═══ | ║ | | | %e A375770 | o - o - o - o | | o - o ║ o - o | %e A375770 +═══ | | ══+ | | | ║ | ══+ %e A375770 | o - o ║ o - o | | o ║ o ║ o - o | %e A375770 | | | ║ | ══+ | | ║ | | | | %e A375770 | o ║ o ║ o - o | | o ║ o - o ║ o | %e A375770 +===+===+=======+ +===+=======+===+ %e A375770 n=5 sample %e A375770 +===+===+===+===+===+ %e A375770 | o ║ o ║ o ║ o ║ o | %e A375770 | | | ║ | ║ | | | %e A375770 | o - o ║ o ║ o - o | %e A375770 | | | | | ══+ %e A375770 | o ║ o - o - o - o | %e A375770 | | ║ | | | ══+ %e A375770 | o ║ o ║ o ║ o - o | %e A375770 | | ║ | ║ | ║ | | | %e A375770 | o ║ o ║ o ║ o ║ o | %e A375770 +===+===+===+===+===+ %e A375770 n=6 sample %e A375770 +===========+===+===+===+ %e A375770 | o - o - o ║ o ║ o ║ o | %e A375770 | | | | ║ | ║ | ║ | | %e A375770 | o ║ o ║ o ║ o ║ o ║ o | %e A375770 | | ║ | ║ | | | ║ | | %e A375770 | o ║ o ║ o - o - o ║ o | %e A375770 | | ║ | ║ | | | ║ | | %e A375770 | o ║ o ║ o ║ o ║ o ║ o | %e A375770 | | ║ | ║ | ║ | ║ | | | %e A375770 | o ║ o ║ o ║ o ║ o - o | %e A375770 | | ║ | ║ | ║ | ║ | ══+ %e A375770 | o ║ o ║ o ║ o ║ o - o | %e A375770 +===+===+===+===+=======+ %e A375770 Examples of spanning trees where some of the walls do not start at a border, so they are not included in this sequence. %e A375770 +===+===+=======+ +===============+ %e A375770 | o ║ o ║ o - o | | o - o - o - o | %e A375770 | | ║ | | | | +══════════ | | %e A375770 | o ║ o - o ║ o | | o - o - o ║ o | %e A375770 | | ║ ═════ ║ | | | | ══ | ║ | | %e A375770 | o ║ o - o ║ o | | o ║ o - o ║ o | %e A375770 | | | | ║ | | | | ═════ | | %e A375770 | o - o ║ o - o | | o - o - o - o | %e A375770 +=======+=======+ +===============+ %o A375770 (PARI) \\ See Link section for program file. %o A375770 vector(20, n, A375770(n)) \\ _Andrew Howroyd_, Sep 03 2024 %Y A375770 Cf. A349718, A375817 (not reduced for symmetries), A375859 (up to rotations), A375860 (up to symmetries of rectangle). %K A375770 nonn %O A375770 1,3 %A A375770 _Lars Blomberg_, Aug 27 2024 %E A375770 a(1) set to 1 and a(9) onwards from _Andrew Howroyd_, Aug 31 2024