This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375776 #27 Aug 30 2024 12:21:54 %S A375776 1,1,2,1,3,4,5,1,4,3,6,2,7,8,9,1,8,7,10,6,11,12,13,5,14,15,16,17,18, %T A375776 19,20,1,12,11,17,10,15,14,21,13,22,23,24,25,26,27,28,2,29,30,31,32, %U A375776 33,34,35,36,37,38,39,40,41,42,43,1,19,18,25,16,23,22,36,10,30,29,32 %N A375776 Bitwise conflict-free sequence: Each number n is placed into the first set k that contains no element x where n AND x > 0: a(n) = k. %H A375776 Alois P. Heinz, <a href="/A375776/b375776.txt">Table of n, a(n) for n = 1..16384</a> %H A375776 Wikipedia, <a href="https://en.wikipedia.org/wiki/Bitwise operation">Bitwise operation</a> %F A375776 a(n) = 1 <=> n in { A000079 }. - _Andrew Howroyd_, Aug 27 2024 %F A375776 a(n) = 2 <=> n in { A164346 }. - _Alois P. Heinz_, Aug 27 2024 %F A375776 a(n) = A279125(n) + 1. - _Rémy Sigrist_, Aug 30 2024 %e A375776 For n = 1, a(1) = 1 because 1 gets put into the first set. %e A375776 For n = 2, a(2) = 1 because 2 AND 1 == 0, so 2 can also be put into the first set. %e A375776 For n = 3, a(3) = 2 because 3 AND 1 == 1, so 3 must be put into a new set. %p A375776 s:= proc() {} end: %p A375776 a:= proc(n) option remember; local k; for k %p A375776 while ormap(x-> Bits[And](x, n)>0, s(k)) do od; %p A375776 s(k):= {s(k)[], n}; k %p A375776 end: %p A375776 seq(a(n), n=1..75); # _Alois P. Heinz_, Aug 27 2024 %o A375776 (Python) %o A375776 def seq(n): %o A375776 L = [0] + [0] * n %o A375776 for i in range(1, n + 1): %o A375776 k = next((k for k in range(1, len(L)) if i & L[k] == 0), None) %o A375776 L[k] |= i %o A375776 yield k %o A375776 (PARI) seq(n)={my(a=vector(n), L=vector(n)); for(n=1, n, for(j=1, oo, if(!bitand(n,L[j]), L[j]=bitor(L[j],n); a[n]=j; break))); a} \\ _Andrew Howroyd_, Aug 27 2024 %Y A375776 Cf. A000079, A164346, A279125. %K A375776 nonn,look,base %O A375776 1,3 %A A375776 _Matt Donahoe_, Aug 27 2024