This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375779 #22 Mar 27 2025 05:40:45 %S A375779 0,2,1,4,3,5,7,8,6,9,12,13,11,14,10,18,17,19,16,20,15,24,23,25,22,26, %T A375779 21,27,31,32,30,33,29,34,28,35,40,41,39,42,38,43,37,44,36,50,49,51,48, %U A375779 52,47,53,46,54,45,60,59,61,58,62,57,63,56,64,55,65,71,72,70,73,69,74,68,75,67,76,66,77 %N A375779 Noll index series of Zernike polynomials converted to ANSI index. %C A375779 ANSI indices of Zernike polynomials sorted by Noll index. %H A375779 Gerhard Ramsebner, <a href="/A375779/b375779.txt">Table of n, a(n) for n = 1..10000</a> %H A375779 Robert J. Noll, <a href="https://doi.org/10.1364/JOSA.66.000207">Zernike polynomials and atmospheric turbulence</a>, J. Opt. Soc. Am. 1976, 66, 207-211. %H A375779 Gerhard Ramsebner, <a href="/A375779/a375779.svg">Noll index of Zernike polynomials (animated SVG)</a> %H A375779 Gerhard Ramsebner, <a href="/A375779/a375779.pdf">PDF</a> %H A375779 Wikipedia, <a href="https://en.wikipedia.org/wiki/Zernike_polynomials#Noll's_sequential_indices">Noll's sequential indices</a> %F A375779 a(j) = (n(n+2)+m)/2 where n=floor( (sqrt(8*(j-1)+1)-1)/2 ) =A003056(j-1) and m = (-1)^j *( mod(n,2)+2*floor((j-n*(n+1)/2-1+mod(n+1,2))/2) ). %F A375779 Quasi-inverse: A176988(1+a(n)) = n assuming offset 1 in A176988 and serialized format. - _R. J. Mathar_, Mar 26 2025 %e A375779 Noll indices ANSI indices %e A375779 1 0 %e A375779 3 2 1 2 %e A375779 5 4 6 3 4 5 %e A375779 9 7 8 10 6 7 8 9 %e A375779 15 13 11 12 14 10 11 12 13 14 %e A375779 ... ... %p A375779 A375779 := proc(j::integer) %p A375779 n := floor((sqrt(8*(j-1)+1)-1)/2) ; %p A375779 m := (-1)^j*(modp(n,2)+2*floor((j-n*(n+1)/2-1+modp(n+1,2))/2)) ; %p A375779 (n*(n+2)+m)/2 ; %p A375779 end proc: %p A375779 seq(A375779(j),j=1..40) ; # _R. J. Mathar_, Mar 27 2025 %o A375779 (PARI) for(j=1, 28, my(n=floor((sqrt(8*(j-1)+1)-1)/2)); my(m=(-1)^j*(n%2+2*floor((j-n*(n+1)/2-1+(n+1)%2)/2))); print(j,",",(n*(n+2)+m)/2)) %Y A375779 Cf. A176988. %K A375779 nonn,tabl,easy %O A375779 1,2 %A A375779 _Gerhard Ramsebner_, Aug 27 2024