cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375779 Noll index series of Zernike polynomials converted to ANSI index.

This page as a plain text file.
%I A375779 #22 Mar 27 2025 05:40:45
%S A375779 0,2,1,4,3,5,7,8,6,9,12,13,11,14,10,18,17,19,16,20,15,24,23,25,22,26,
%T A375779 21,27,31,32,30,33,29,34,28,35,40,41,39,42,38,43,37,44,36,50,49,51,48,
%U A375779 52,47,53,46,54,45,60,59,61,58,62,57,63,56,64,55,65,71,72,70,73,69,74,68,75,67,76,66,77
%N A375779 Noll index series of Zernike polynomials converted to ANSI index.
%C A375779 ANSI indices of Zernike polynomials sorted by Noll index.
%H A375779 Gerhard Ramsebner, <a href="/A375779/b375779.txt">Table of n, a(n) for n = 1..10000</a>
%H A375779 Robert J. Noll, <a href="https://doi.org/10.1364/JOSA.66.000207">Zernike polynomials and atmospheric turbulence</a>, J. Opt. Soc. Am. 1976, 66, 207-211.
%H A375779 Gerhard Ramsebner, <a href="/A375779/a375779.svg">Noll index of Zernike polynomials (animated SVG)</a>
%H A375779 Gerhard Ramsebner, <a href="/A375779/a375779.pdf">PDF</a>
%H A375779 Wikipedia, <a href="https://en.wikipedia.org/wiki/Zernike_polynomials#Noll&#39;s_sequential_indices">Noll's sequential indices</a>
%F A375779 a(j) = (n(n+2)+m)/2 where n=floor( (sqrt(8*(j-1)+1)-1)/2 ) =A003056(j-1) and m = (-1)^j *( mod(n,2)+2*floor((j-n*(n+1)/2-1+mod(n+1,2))/2) ).
%F A375779 Quasi-inverse: A176988(1+a(n)) = n assuming offset 1 in A176988 and serialized format. - _R. J. Mathar_, Mar 26 2025
%e A375779 Noll indices     ANSI indices
%e A375779  1                0
%e A375779  3 2              1 2
%e A375779  5 4 6            3 4 5
%e A375779  9 7 8 10         6 7 8 9
%e A375779  15 13 11 12 14   10 11 12 13 14
%e A375779  ...              ...
%p A375779 A375779 := proc(j::integer)
%p A375779     n := floor((sqrt(8*(j-1)+1)-1)/2) ;
%p A375779     m := (-1)^j*(modp(n,2)+2*floor((j-n*(n+1)/2-1+modp(n+1,2))/2)) ;
%p A375779     (n*(n+2)+m)/2 ;
%p A375779 end proc:
%p A375779 seq(A375779(j),j=1..40) ; # _R. J. Mathar_, Mar 27 2025
%o A375779 (PARI) for(j=1, 28, my(n=floor((sqrt(8*(j-1)+1)-1)/2)); my(m=(-1)^j*(n%2+2*floor((j-n*(n+1)/2-1+(n+1)%2)/2))); print(j,",",(n*(n+2)+m)/2))
%Y A375779 Cf. A176988.
%K A375779 nonn,tabl,easy
%O A375779 1,2
%A A375779 _Gerhard Ramsebner_, Aug 27 2024