cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375781 Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, Sum_{k = 1..n} 1 / (prime(k)*a(k)) < 1 (where prime(k) denotes the k-th prime number).

This page as a plain text file.
%I A375781 #19 Mar 19 2025 10:13:11
%S A375781 1,1,2,3,5,89,39304,46994541278,17331821184409051471456,
%T A375781 684945610024339520619912889548385212804350252,
%U A375781 454557097914340869696918952726502107711786801276885341616727617337826266151394840009711293
%N A375781 Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, Sum_{k = 1..n} 1 / (prime(k)*a(k)) < 1 (where prime(k) denotes the k-th prime number).
%C A375781 The sum of the reciprocals of the primes diverges. We divide each of its terms in such a way as to have a series bounded by 1.
%H A375781 Alois P. Heinz, <a href="/A375781/b375781.txt">Table of n, a(n) for n = 1..14</a>
%H A375781 N. J. A. Sloane, <a href="https://www.youtube.com/watch?v=3RAYoaKMckM">A Nasty Surprise in a Sequence and Other OEIS Stories</a>, Experimental Mathematics Seminar, Rutgers University, Oct 10 2024, Youtube video; <a href="https://sites.math.rutgers.edu/~zeilberg/expmath/sloane85BD.pdf">Slides</a> [Mentions this sequence]
%H A375781 Wikipedia, <a href="https://en.wikipedia.org/wiki/Divergence_of_the_sum_of_the_reciprocals_of_the_primes">Divergence of the sum of the reciprocals of the primes</a>
%e A375781 The first terms, alongside the corresponding sums, are:
%e A375781   n  a(n)   Sum_{k=1..n} 1/(prime(k)*a(k))
%e A375781   -  -----  ------------------------------
%e A375781   1      1  1/2
%e A375781   2      1  5/6
%e A375781   3      2  14/15
%e A375781   4      3  103/105
%e A375781   5      5  1154/1155
%e A375781   6     89  1336333/1336335
%e A375781   7  39304  892896284279/892896284280
%p A375781 s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(ithprime(n)*a(n))) end:
%p A375781 a:= proc(n) a(n):= 1+floor(1/((1-s(n-1))*ithprime(n))) end:
%p A375781 seq(a(n), n=1..11);  # _Alois P. Heinz_, Oct 18 2024
%t A375781 s[n_] := s[n] = If[n == 0, 0, s[n-1] + 1/(Prime[n]*a[n])];
%t A375781 a[n_] := a[n] = 1 + Floor[1/((1 - s[n-1])*Prime[n])];
%t A375781 Table[a[n], {n, 1, 11}] (* _Jean-François Alcover_, Mar 19 2025, after _Alois P. Heinz_ *)
%o A375781 (PARI) { r = 1; forprime (p = 2, prime(11), print1 (a = floor(1/(r*p)) + 1", "); r -= 1 / (a*p);); }
%o A375781 (Python)
%o A375781 from itertools import islice
%o A375781 from math import gcd
%o A375781 from sympy import nextprime
%o A375781 def A375781_gen(): # generator of terms
%o A375781     p, q, k = 0, 1, 1
%o A375781     while (k:=nextprime(k)):
%o A375781         yield (m:=q//(k*(q-p))+1)
%o A375781         p, q = p*k*m+q, k*m*q
%o A375781         p //= (r:=gcd(p,q))
%o A375781         q //= r
%o A375781 A375781_list = list(islice(A375781_gen(),11)) # _Chai Wah Wu_, Aug 30 2024
%Y A375781 Cf. A000040, A374663.
%K A375781 nonn
%O A375781 1,3
%A A375781 _Rémy Sigrist_, Aug 28 2024