This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375784 #21 Sep 05 2024 14:13:43 %S A375784 101,13,2,3,41,5,61,7,83,19,1003,115,22,33,445,55,166,77,818,299, %T A375784 10002,1113,222,333,4244,555,2666,777,8828,3999,100002,11011,22122, %U A375784 33332,4444,15555,6666,75777,38888,9999,1000004,1011112,222220,333330,444244,552555,666366,777770,88888,999996 %N A375784 Array read by rows: T(n,k) is the first number with n prime factors (counted with multiplicity) and n occurrences of decimal digit k. %H A375784 Robert Israel, <a href="/A375784/b375784.txt">Table of n, a(n) for n = 1..150</a> %F A375784 If n - A046053(n) is odd and >= 1, then T(n,k) <= k * A002275(n) * 10^((n - A046053(n) - 1)/2) for k = 2, 3, 5 and 7. %F A375784 If n - A046053(n) is odd and >= 3, then T(n,8) <= 8 * A002275(n) * 10^((n - A046053(n) - 3)/2). %F A375784 If n - A046053(n) is even and >= 0, then T(n,1) <= A002275(n) * 10^((n - A046053(n))/2). %F A375784 If n - A046053(n) is even and >= 2, then T(n,k) <= k * A002275(n) * 10^((n - A046053(n) - 2)/2) for k = 4, 6 and 9. %e A375784 T(5,1) = 1011112 = 2^3 * 211 * 599 has 5 prime factors (counted with multiplicity) and 5 1's, and is the first such number. %e A375784 Array starts %e A375784 101 13 2 3 41 5 61 7 83 19 %e A375784 1003 115 22 33 445 55 166 77 818 299 %e A375784 10002 1113 222 333 4244 555 2666 777 8828 3999 %e A375784 100002 11011 22122 33332 4444 15555 6666 75777 38888 9999 %e A375784 1000004 1011112 222220 333330 444244 552555 666366 777770 88888 999996 %p A375784 F:= proc(v, x) local d, y, z, L, S, SS, Cands, t, i, k; %p A375784 for d from v do %p A375784 Cands:= NULL; %p A375784 if x = 0 then SS:= combinat:-choose([$1..d-1], v) %p A375784 else SS:= combinat:-choose([$1..d], v) %p A375784 fi; %p A375784 for S in SS do %p A375784 for y from 9^(d-v+1) to 9^(d-v+1)+9^(d-v)-1 do %p A375784 L:= convert(y, base, 9)[1..d-v+1]; %p A375784 L:= map(proc(s) if s < x then s else s+1 fi end proc, L); %p A375784 i:= 1; %p A375784 t:= 0: %p A375784 for k from 1 to d do %p A375784 if member(k, S) then t:= t + x*10^(k-1) %p A375784 else t:= t + L[i]*10^(k-1); i:= i+1; %p A375784 fi; %p A375784 od; %p A375784 Cands:= Cands, t %p A375784 od od; %p A375784 Cands:= sort([Cands]); %p A375784 for t in Cands do if numtheory:-bigomega(t)=v then return t fi od; %p A375784 od %p A375784 end proc: %p A375784 for i from 1 to 10 do %p A375784 seq(F(i, x), x=0..9) %p A375784 od; %t A375784 T[n_, k_]:=Module[{m=2}, While[PrimeOmega[m]!=n||Count[IntegerDigits[m], k]!=n, m++]; m]; Table[T[n, k], {n, 1, 5}, {k, 0, 9}]//Flatten (* _Stefano Spezia_, Aug 30 2024 *) %Y A375784 Cf. A001222, A002275, A046053, A375760. %K A375784 nonn,base,tabf %O A375784 1,1 %A A375784 _Robert Israel_, Aug 28 2024