cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375786 a(n) is the minimum volume of an integer-sided cuboid having the same surface as a cube with edge length n.

Original entry on oeis.org

1, 8, 13, 36, 37, 104, 73, 188, 121, 252, 181, 428, 253, 540, 337, 764, 433, 828, 541, 1196, 661, 1448, 793, 1476, 937, 2024, 1093, 2160, 1261, 2592, 1441, 2628, 1633, 3464, 1837, 3884, 2053, 3708, 2281, 4796, 2521, 5148, 2773, 5616, 3037, 5436, 3313, 6660, 3601
Offset: 1

Views

Author

Felix Huber, Sep 17 2024

Keywords

Comments

Conjecture: From the integer-sided cuboids with same surface 6*n^2 always the one with the smallest edge length has the minimum volume. If there are several integer-sided cuboids having the smallest edge length, then the one with the smallest second smallest edge length has the minimum volume (checked up to a(1000)).
The maximum volume is always A000578(n) = n^3.

Examples

			a(6) = 104: because from the five integer-sided cuboids (2, 2, 26), (2, 5, 14), (2, 6, 12), (3, 6, 10), (6, 6, 6) having the same surface as a cube with edge length 6 (see example in A375785) has (2, 2, 26) with 2*2*26 = 104 the smallest volume.
		

Crossrefs

Programs

  • Maple
    See Huber link.