cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A376276 Table T(n, k) n > 0, k > 2 read by upward antidiagonals. The sequences in each column k is a triangle read by rows (blocks), where each row is a permutation of the numbers of its constituents. The length of the row number n in column k is equal to the n-th k-gonal number A086270.

Original entry on oeis.org

1, 3, 1, 4, 4, 1, 2, 3, 4, 1, 8, 5, 5, 5, 1, 7, 2, 3, 4, 5, 1, 9, 10, 6, 6, 6, 6, 1, 6, 11, 2, 3, 4, 5, 6, 1, 10, 9, 13, 7, 7, 7, 7, 7, 1, 5, 12, 12, 2, 3, 4, 5, 6, 7, 1, 16, 8, 14, 15, 8, 8, 8, 8, 8, 8, 1, 15, 13, 11, 16, 2, 3, 4, 5, 6, 7, 8, 1, 17, 7, 15, 14, 18, 9, 9, 9, 9, 9, 9, 9, 1, 14, 14, 10, 17, 17, 2, 3, 4, 5, 6, 7, 8, 9, 1, 18, 6, 16, 13, 19, 20, 10, 10, 10
Offset: 1

Views

Author

Boris Putievskiy, Sep 18 2024

Keywords

Comments

A209278 presents an algorithm for generating permutations.
The sequence is an intra-block permutation of integer positive numbers.

Examples

			Table begins:
  k =      3   4   5   6   7   8
--------------------------------------
  n = 1:   1,  1,  1,  1,  1,  1, ...
  n = 2:   3,  4,  4,  5,  5,  6, ...
  n = 3:   4,  3,  5,  4,  6,  5, ...
  n = 4:   2,  5,  3,  6,  4,  7, ...
  n = 5:   8,  2,  6,  3,  7,  4, ...
  n = 6:   7, 10,  2,  7,  3,  8, ...
  n = 7:   9, 11, 13,  2,  8,  3, ...
  n = 8:   6,  9, 12, 15,  2,  9, ...
  n = 9:  10, 12, 14, 16, 18,  2, ...
  n =10:   5,  8, 11, 14, 17, 20, ...
  n =11:  16, 13, 15, 17, 19, 21, ...
  n =12:  15, 7,  10, 13, 16, 19, ...
  n =13:  17, 14, 16, 18, 20, 22, ...
  n =14:  14,  6,  9, 12, 15, 18, ...
  n =15:  18, 23, 17, 19, 21, 23, ...
  n =16:  13, 22,  8, 11, 14, 17, ...
  n =17:  19, 24, 18, 20, 22, 24, ...
  n =18:  12, 21,  7, 10, 13, 16, ...
  n =19:  20, 25, 30, 21, 23, 25, ...
  n =20:  11, 20, 29,  9, 12, 15, ...
          ... .
For k = 3 the first 4 blocks have lengths 1,3,6 and 10.
For k = 4 the first 3 blocks have lengths 1,4, and 9.
For k = 5 the first 3 blocks have lengths 1,5, and 12.
Each block is a permutation of the numbers of its constituents.
The first 6 antidiagonals are:
  1;
  3, 1;
  4, 4, 1;
  2, 3, 4, 1;
  8, 5, 5, 5, 1;
  7, 2, 3, 4, 5, 1;
		

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 45.

Crossrefs

Programs

  • Mathematica
    T[n_,k_]:=Module[{L,R,P,Res,result},L=Ceiling[Max[x/.NSolve[x^3*(k-2)+3*x^2-x*(k-5)-6*n==0,x,Reals]]];
    R=n-(((L-1)^3)*(k-2)+3*(L-1)^2-(L-1)*(k-5))/6;P=Which[OddQ[R]&&OddQ[k*L*(L-1)/2-L^2+2*L],((k*L*(L-1)/2-L^2+2*L+1-R)+1)/2,OddQ[R]&&EvenQ[k*L*(L-1)/2-L^2+2*L],(R+k*L*(L-1)/2-L^2+2*L+1)/2,EvenQ[R]&&OddQ[k*L*(L-1)/2-L^2+2*L],Ceiling[(k*L*(L-1)/2-L^2+2*L+1)/2]+R/2,EvenQ[R]&&EvenQ[k*L*(L-1)/2-L^2+2*L],Ceiling[(k*L*(L-1)/2-L^2+2*L+1)/2]-R/2];
    Res=P+((L-1)^3*(k-2)+3*(L-1)^2-(L-1)*(k-5))/6;result=Res;result]
    Nmax=6;Table[T[n,k],{n,1,Nmax},{k,3,Nmax+2}]

Formula

T(n,k) = P(n,k) + ((L(n,k)-1)^3*(k-2)+3*(L(n,k)-1)^2-(L(n,k)-1)*(k-5))/6, where L(n,k) = ceiling(x(n,k)), x(n,k) is largest real root of the equation x^3*(k - 2) + 3*x^2 - x*(k - 5) - 6*n = 0. R(n,k) = n - ((L(n,k) - 1)^3*(k-2)+3*(L(n,k)-1)^2-(L(n,k)-1)*(k-5))/6. P(n,k) = ((k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) + 2 - R(n,k)) / 2 if R is odd and (k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) is odd, P(n,k) = (R(n,k) + (k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) + 1) / 2 if R is odd and (k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) is even, P(n,k) = ceiling(((k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) + 1) / 2) + (R(n,k) / 2) if R is even and (k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) is odd, P(n,k) = ceiling(((k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) + 1) / 2) - (R(n,k) / 2) if R is even and (k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) is even.
T(1,n) = A000012(n). T(2,n) = A004526(n+7). T(3,n) = A028242(n+6). T(4,n) = A084964(n+5). T(n-2,n) = A000027(n) for n > 3. L(n,3) = A360010(n). L(n,4) = A074279(n).

A376353 Table T(n, k) n > 0, k > 2 read by upward antidiagonals. The sequences in each column k is a triangle read by rows (blocks), where each row is a permutation of the numbers of its constituents. The length of the row number n in column k is equal to the n-th k-pyramidal number A261720.

Original entry on oeis.org

1, 4, 1, 3, 4, 1, 5, 5, 5, 1, 2, 3, 4, 5, 1, 11, 6, 6, 6, 6, 1, 10, 2, 3, 4, 5, 6, 1, 12, 14, 7, 7, 7, 7, 7, 1, 9, 13, 2, 3, 4, 5, 6, 7, 1, 13, 15, 17, 8, 8, 8, 8, 8, 8, 1, 8, 12, 16, 2, 3, 4, 5, 6, 7, 8, 1, 14, 16, 18, 20, 9, 9, 9, 9, 9, 9, 9, 1, 7, 11, 15, 19, 2, 3, 4, 5, 6, 7, 8, 9, 1, 15, 17, 19, 21, 23, 10, 10, 10, 10, 10, 10, 10, 10, 1, 6, 10, 14, 18, 22, 2, 3
Offset: 1

Views

Author

Boris Putievskiy, Sep 21 2024

Keywords

Comments

A209278 presents an algorithm for generating permutations.
The sequence is an intra-block permutation of integer positive numbers.

Examples

			Table begins:
  k =      3   4   5   6   7   8
--------------------------------------
  n = 1:   1,  1,  1,  1,  1,  1, ...
  n = 2:   4,  4,  5,  5,  6,  6, ...
  n = 3:   3,  5,  4,  6,  5,  7, ...
  n = 4:   5,  3,  6,  4,  7,  5, ...
  n = 5:   2,  6,  3,  7,  4,  8, ...
  n = 6:  11,  2,  7,  3,  8,  4, ...
  n = 7:  10, 14,  2,  8,  3,  9, ...
  n = 8:  12, 13, 17,  2,  9,  3, ...
  n = 9:   9, 15, 16, 20,  2, 10, ...
  n = 10: 13, 12, 18, 19, 23,  2, ...
  n = 11:  8, 16, 15, 21, 22, 26, ...
  n = 12: 14, 11, 19, 18, 24, 25, ...
  n = 12:  7, 17, 14, 22, 21, 27, ...
  n = 14: 15, 10, 20, 17, 25, 24, ...
  n = 15:  6, 18, 13, 23, 20, 28, ...
          ... .
For k = 3 the first 3 blocks have lengths 1,4 and 10.
For k = 4 the first 2 blocks have lengths 1 and 5.
For k = 5 the first 2 blocks have lengths 1 and 6.
Each block is a permutation of the numbers of its constituents.
The first 6 antidiagonals are:
   1;
   4, 1;
   3, 4, 1;
   5, 5, 5, 1;
   2, 3, 4, 5, 1;
  11, 6, 6, 6, 6, 1;
		

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.

Crossrefs

Programs

  • Mathematica
    T[n_,k_]:=Module[{L,R,result},L=Ceiling[Max[x/.NSolve[(k-2)*x^4+2*k*x^3+(14-k)*x^2+(12-2*k)*x-24*n==0,x,Reals]]]; R=n-((k-2)*(L-1)^4+2*k*(L-1)^3+(14-k)*(L-1)^2+(12-2*k)*(L-1))/24; P=Which[OddQ[R]&&OddQ[(L^3*(k-2)+3*L^2-L*(k-5))/6],((L^3*(k-2)+3*L^2-L*(k-5))/6+2-R)/2,OddQ[R]&&EvenQ[(L^3*(k-2)+3*L^2-L*(k-5))/6],(R+(L^3*(k-2)+3*L^2-L*(k-5))/6+1)/2,EvenQ[R]&&OddQ[(L^3*(k-2)+3*L^2-L*(k-5))/6],Ceiling[((L^3*(k-2)+3*L^2-L*(k-5))/6+1)/2]+R/2,EvenQ[R]&&EvenQ[(L^3*(k-2)+3*L^2-L*(k-5))/6],Ceiling[((L^3*(k-2)+3*L^2-L*(k-5))/6+1)/2]-R/2]; Res= P +((k-2)*(L-1)^4+2*k*(L-1)^3+(14-k)*(L-1)^2+(12-2*k)*(L-1))/24; result=Res] Nmax=6; Table[T[n,k],{n,1,Nmax},{k,3,Nmax+2}]

Formula

T(n,k) = P(n,k) + ((k-2)*(L(n,k)-1)^4+2*k*(L(n,k)-1)^3+(14-k)*(L(n,k)-1)^2+(12-2*k)*(L(n,k)-1))/24, where L(n,k) = ceiling(x(n,k)), x(n,k) is largest real root of the equation (k-2)*x^4+2*k*x^3+(14-k)*x^2+(12-2*k)*x-24*n = 0. R(n,k) = n - ((k-2)*(L(n,k)-1)^4+2*k*(L(n,k)-1)^3+(14-k)*(L(n,k)-1)^2+(12-2*k)*(L(n,k)-1))/24. P(n,k) = ((L(n,k)^3*(k-2)+3*L(n,k)^2-L(n,k)*(k-5))/6+2-R(n,k))/2 if R(n,k) is odd and (L(n,k)^3*(k-2)+3*L(n,k)^2-L(n,k)*(k-5))/6 is odd, P(n,k) = ((L(n,k)^3*(k-2)+3*L(n,k)^2-L(n,k)*(k-5))/6+1)+R(n,k))/2 if R(n,k) is odd and (L(n,k)^3*(k-2)+3*L(n,k)^2-L(n,k)*(k-5))/6 is even, P = ceiling(((L(n,k)^3*(k-2)+3*L(n,k)^2-L(n,k)*(k-5))/6+1)/2)+R(n,k)/2) if R(n,k) is even and (L(n,k)^3*(k-2)+3*L(n,k)^2-L(n,k)*(k-5))/6 is odd, P = ceiling(((L(n,k)^3*(k-2)+3*L(n,k)^2-L(n,k)*(k-5))/6+1)/2)-R(n,k)/2) if R(n,k) is even and (L(n,k)^3*(k-2)+3*L(n,k)^2-L(n,k)*(k-5))/6 is even.
T(1,n) = A000012(n). T(2,n) = A004526(n+8). T(3,n) = A028242(n+7). T(4,n) = A084964(n+6). T(5,n) = A168230(n+5). T(n-2,n) = 4*A000012(n) for n > 3. T(n-1,n) = A000027(n) for n > 2.
Showing 1-2 of 2 results.