A375800 Number of ways of placing 2n nonattacking rooks on a hexagonal board of equilateral triangular spaces with n spaces along each edge.
3, 24, 348, 7812, 255756, 11747504, 714121392
Offset: 1
Examples
For n = 2, the a(2) = 24 arrangements are rotations and reflections of: o---o---o o---o---o o---o---o /X\ / \ / \ /X\ / \ / \ /X\ / \ / \ o---o---o---o o---o---o---o o---o---o---o / \ / \ /X\ / \ / \ / \ / \X/ \ / \ / \ / \X/ \ o---o---o---o---o o---o---o---o---o o---o---o---o---o \ / \ / \ / \X/ \ / \ / \ /X\ / \ /X\ / \ / \ / o---o---o---o o---o---o---o o---o---o---o \X/ \ / \ / \X/ \ / \ / \ / \ / \X/ o---o---o o---o---o o---o---o (12 symmetries) (6 symmetries) (6 symmetries) For n = 2, the a(2) = 24 matrices counted are: 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 2 3 4 1 2 3 4 1 2 4 1 3 2 4 3 1 4 2 1 3 4 3 1 2 4 2 3 1 4 1 2 3 - 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 2 4 3 1 3 1 4 2 3 2 4 1 3 2 4 1 4 2 1 3 3 4 1 2 3 4 1 2 4 3 1 2 - 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 3 4 1 2 3 4 1 2 3 4 2 1 3 4 2 1 4 1 3 2 4 2 3 1 4 1 2 3 4 1 3 2 plus the same matrices with rows 2 and 3 interchanged.
Programs
-
MiniZinc
% minizinc -D 'N=5' -s --all-solutions a375800.mzn include "globals.mzn"; include "alldifferent.mzn"; int: N; array[1..2*N] of var 1..2*N: perm1; array[1..2*N] of var 1..2*N: perm2; constraint forall(i in 1..2*N)(3*N+1 <= perm1[i]+perm2[i]+i /\ perm1[i]+perm2[i]+i <= 3*N+2); constraint alldifferent(perm1); constraint alldifferent(perm2); solve satisfy; output [show(i) ++ " " | i in 1..2*N]; output [show(perm1[i]) ++ " " | i in 1..2*N]; output [show(perm2[i]) ++ " " | i in 1..2*N];
Comments