cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375802 Lexicographically earliest sequence of positive integers such that the sum of the inverses of the indices where the sequence has the same value is at most 1.

This page as a plain text file.
%I A375802 #15 Aug 31 2024 08:32:24
%S A375802 1,2,2,3,3,2,3,3,3,3,4,4,4,4,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,
%T A375802 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
%U A375802 5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6
%N A375802 Lexicographically earliest sequence of positive integers such that the sum of the inverses of the indices where the sequence has the same value is at most 1.
%C A375802 In other words, if a(n_1) = ... = a(n_k) with n_1 < ... < n_k then 1/n_1 + ... + 1/n_k <= 1.
%C A375802 Each positive integer appears in the sequence, a finite number of times. This is a consequence of the fact that the greedy algorithm for Egyptian fractions terminates in a finite number of steps for any rational starting value.
%H A375802 Rémy Sigrist, <a href="/A375802/b375802.txt">Table of n, a(n) for n = 1..10000</a>
%H A375802 Wikipedia, <a href="https://en.wikipedia.org/wiki/Greedy_algorithm_for_Egyptian_fractions">Greedy algorithm for Egyptian fractions</a>
%H A375802 <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractons</a>
%F A375802 a(A157248(n)) <= a(A157248(n+1)).
%e A375802 The first terms, alongside the sums of the inverses of the indices so far where the sequence has the same value, are:
%e A375802   n   a(n)  Sums
%e A375802   --  ----  ---------
%e A375802    1     1  1
%e A375802    2     2  1/2
%e A375802    3     2  5/6
%e A375802    4     3  1/4
%e A375802    5     3  9/20
%e A375802    6     2  1
%e A375802    7     3  83/140
%e A375802    8     3  201/280
%e A375802    9     3  2089/2520
%e A375802   10     3  2341/2520
%o A375802 (PARI) { b = vector(6); for (n = 1, 87, for (v = 1, oo, if (b[v] + 1/n <= 1, b[v] += 1/n; print1 (v", "); break;););); }
%o A375802 (Python)
%o A375802 from fractions import Fraction
%o A375802 from itertools import count, islice
%o A375802 from collections import defaultdict
%o A375802 def agen(): # generator of terms
%o A375802     invsum, mink = defaultdict(int), 1
%o A375802     for n in count(1):
%o A375802         an = next(k for k in count(mink) if invsum[k] + Fraction(1, n) <= 1)
%o A375802         yield an
%o A375802         invsum[an] += Fraction(1, n)
%o A375802         while invsum[mink] == 1: mink += 1
%o A375802 print(list(islice(agen(), 87))) # _Michael S. Branicky_, Aug 31 2024
%Y A375802 Cf. A157248, A323725.
%K A375802 nonn,easy
%O A375802 1,2
%A A375802 _Rémy Sigrist_, Aug 29 2024