cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375809 Expansion of e.g.f. 1/(1 + (log(1 - x^3))/x^2)^3.

This page as a plain text file.
%I A375809 #13 Sep 01 2024 10:14:02
%S A375809 1,3,12,60,396,3240,30960,337680,4152960,56790720,853675200,
%T A375809 13990838400,248242579200,4739385530880,96860893409280,
%U A375809 2109714647040000,48780176949504000,1193187564259891200,30781385655513292800,835194405961256140800
%N A375809 Expansion of e.g.f. 1/(1 + (log(1 - x^3))/x^2)^3.
%F A375809 E.g.f.: B(x)^3, where B(x) is the e.g.f. of A375799.
%F A375809 a(n) = (n!/2) * Sum_{k=0..floor(n/3)} (n-3*k+2)! * |Stirling1(n-2*k,n-3*k)|/(n-2*k)!.
%o A375809 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+log(1-x^3)/x^2)^3))
%o A375809 (PARI) a(n) = n!*sum(k=0, n\3, (n-3*k+2)!*abs(stirling(n-2*k, n-3*k, 1))/(n-2*k)!)/2;
%Y A375809 Cf. A375799, A375808.
%Y A375809 Cf. A375813.
%K A375809 nonn
%O A375809 0,2
%A A375809 _Seiichi Manyama_, Aug 29 2024