This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375816 #38 Sep 07 2024 16:03:45 %S A375816 217,13333,16297,23653,30673,44173,46657,48133,56033,98173,130417, %T A375816 131977,136137,179893,188113,190513,197633,267977,334153,334657, %U A375816 347777,360533,407353,412933,421637,486157,667153,670033,677917,694153,710533,765073,839833,935137,997633 %N A375816 Odd numbers k > 1 such that gcd(5,k) = 1 and 5^((k-1)/2) == -(5/k) (mod k), where (5/k) is the Jacobi symbol (or Kronecker symbol); Euler pseudoprimes to base 5 (A262052) that are not Euler-Jacobi pseudoprimes to base 5 (A375914). %C A375816 Note that if k is odd and b^((k-1)/2) == -(b/k) (mod k), then taking Jacobi symbol modulo k (which depends only on the remainder modulo k) yields (b/k)^((k-1)/2) = -(b/k), or (b/k)^((k+1)/2) = -1. This implies that (k+1)/2 is odd, so k == 1 (mod 4). Moreover, if k > 1, then (b/k) = -1 (see the Math Stack Exchange link below), so b^((k-1)/2) == 1 (mod k). In particular, this sequence is equivalent to "numbers k == 13, 17 (mod 20) such that 5^((k-1)/2) == 1 (mod k)". [Comment rewritten by _Jianing Song_, Sep 07 2024] %H A375816 Jianing Song, <a href="/A375816/b375816.txt">Table of n, a(n) for n = 1..1000</a> %H A375816 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/q/4966167">There are no a in Z and odd k > 1 such that (a/k) = 1 and a^((k-1)/2) == -1 (mod k)</a> %e A375816 217 is a term because (5/217) = -1, and 5^((217-1)/2) == 1 (mod 217). %o A375816 (PARI) isA375816(k) = (k>1) && gcd(k,10)==1 && Mod(5,k)^((k-1)/2)==-kronecker(5,k) %o A375816 (PARI) isA375816(k) = (k%20==13 || k%20==17) && Mod(5,k)^((k-1)/2)==1 %Y A375816 | b=2 | b=3 | b=5 | %Y A375816 -----------------------------------+-------------------+---------+----------+ %Y A375816 (b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | A375915 | %Y A375816 -----------------------------------+-------------------+---------+----------+ %Y A375816 (b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | A375918 | A375916 | %Y A375816 -----------------------------------+-------------------+---------+----------+ %Y A375816 b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | this seq | %Y A375816 (b/k)=-1, b^((k-1)/2)==1 (mod k) | | | | %Y A375816 -----------------------------------+-------------------+---------+----------+ %Y A375816 Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 | %Y A375816 (union of first two) | | | | %Y A375816 -----------------------------------+-------------------+---------+----------+ %Y A375816 Euler pseudoprimes | A006970 | A262051 | A262052 | %Y A375816 (union of all three) | | | | %K A375816 nonn %O A375816 1,1 %A A375816 _Jianing Song_, Sep 01 2024